The Euclidean MST-Ratio for Bi-Colored Lattices

Authors Sebastiano Cultrera di Montesano , Ondřej Draganov , Herbert Edelsbrunner , Morteza Saghafian



PDF
Thumbnail PDF

File

LIPIcs.GD.2024.3.pdf
  • Filesize: 0.86 MB
  • 23 pages

Document Identifiers

Author Details

Sebastiano Cultrera di Montesano
  • Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
Ondřej Draganov
  • Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
Herbert Edelsbrunner
  • Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
Morteza Saghafian
  • Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria

Cite AsGet BibTex

Sebastiano Cultrera di Montesano, Ondřej Draganov, Herbert Edelsbrunner, and Morteza Saghafian. The Euclidean MST-Ratio for Bi-Colored Lattices. In 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 320, pp. 3:1-3:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.GD.2024.3

Abstract

Given a finite set, A ⊆ ℝ², and a subset, B ⊆ A, the MST-ratio is the combined length of the minimum spanning trees of B and A⧵B divided by the length of the minimum spanning tree of A. The question of the supremum, over all sets A, of the maximum, over all subsets B, is related to the Steiner ratio, and we prove this sup-max is between 2.154 and 2.427. Restricting ourselves to 2-dimensional lattices, we prove that the sup-max is 2, while the inf-max is 1.25. By some margin the most difficult of these results is the upper bound for the inf-max, which we prove by showing that the hexagonal lattice cannot have MST-ratio larger than 1.25.

Subject Classification

ACM Subject Classification
  • Theory of computation → Computational geometry
Keywords
  • Minimum spanning Trees
  • Steiner Ratio
  • Lattices
  • Partitions

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Gunnar E. Carlsson. Topology and data. Bulletin of the American Mathematical Society, 46:255-308, 2009. URL: https://doi.org/10.1090/S0273-0979-09-01249-X.
  2. F. Chung and R. Graham. A new bound for Euclidean Steiner minimal trees. Annals of the New York Academy of Sciences, 440:328-346, 1985. URL: https://doi.org/10.1111/j.1749-6632.1985.tb14564.x.
  3. David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Stability of persistence diagrams. Discrete Comput. Geom., pages 103-120, 2007. URL: https://doi.org/10.1007/s00454-006-1276-5.
  4. David Cohen-Steiner, Herbert Edelsbrunner, John Harer, and Dmitriy Morozov. Persistent homology for kernels, images, and cokernels. In Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1011-1020, January 2009. URL: https://doi.org/10.1137/1.9781611973068.110.
  5. Sebastiano Cultrera di Montesano, Ondřej Draganov, Herbert Edelsbrunner, and Morteza Saghafian. Chromatic alpha complexes, 2024. URL: https://doi.org/10.48550/arXiv.2212.03128.
  6. Adrian Dumitrescu, János Pach, and Géza Tóth. Two trees are better than one, 2023. URL: https://doi.org/10.48550/arXiv.2312.09916.
  7. Herbert Edelsbrunner and John Harer. Computational Topology: An Introduction. Springer, January 2010. URL: https://doi.org/10.1007/978-3-540-33259-6_7.
  8. E. N. Gilbert and H. O. Pollak. Steiner minimal trees. SIAM J. Appl. Math., 16(1):1-29, January 1968. URL: https://doi.org/10.1137/0116001.
  9. V. Jarník. O jistém problému minimálním: (z dopisu panu O. Borůvkovi). Mor. přírodovědecká společnost, 1930. URL: http://dml.cz/dmlcz/500726.
  10. V. Jarník and M. Kössler. O minimálních grafech, obsahujících n daných bodů. Časopis pro pěstování matematiky a fysiky, 063(8):223-235, 1934. URL: https://doi.org/10.21136/CPMF.1934.122548.
  11. Joseph B. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical Society, 7(1):48-50, 1956. URL: https://doi.org/10.2307/2033241.
  12. B. Zhilinskii. Introduction to Louis Michel’s Lattice Geometry Through Group Action. Current natural sciences. EDP Sciences, 2015. URL: http://library.oapen.org/handle/20.500.12657/25012.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail