Revisiting ILP Models for Exact Crossing Minimization in Storyline Drawings

Authors Alexander Dobler , Michael Jünger, Paul J. Jünger, Julian Meffert , Petra Mutzel , Martin Nöllenburg



PDF
Thumbnail PDF

File

LIPIcs.GD.2024.31.pdf
  • Filesize: 1.84 MB
  • 19 pages

Document Identifiers

Author Details

Alexander Dobler
  • TU Wien, Austria
Michael Jünger
  • University of Cologne, Germany
Paul J. Jünger
  • University of Bonn, Germany
Julian Meffert
  • University of Bonn, Germany
Petra Mutzel
  • University of Bonn, Germany
Martin Nöllenburg
  • TU Wien, Austria

Cite AsGet BibTex

Alexander Dobler, Michael Jünger, Paul J. Jünger, Julian Meffert, Petra Mutzel, and Martin Nöllenburg. Revisiting ILP Models for Exact Crossing Minimization in Storyline Drawings. In 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 320, pp. 31:1-31:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.GD.2024.31

Abstract

Storyline drawings are a popular visualization of interactions of a set of characters over time, e.g., to show participants of scenes in a book or movie. Characters are represented as x-monotone curves that converge vertically for interactions and diverge otherwise. Combinatorially, the task of computing storyline drawings reduces to finding a sequence of permutations of the character curves for the different time points, with the primary objective being crossing minimization of the induced character trajectories. In this paper, we revisit exact integer linear programming (ILP) approaches for this NP-hard problem. By enriching previous formulations with additional problem-specific insights and new heuristics, we obtain exact solutions for an extended new benchmark set of larger and more complex instances than had been used before. Our experiments show that our enriched formulations lead to better performing algorithms when compared to state-of-the–art modelling techniques. In particular, our best algorithms are on average 2.6-3.2 times faster than the state-of-the-art and succeed in solving complex instances that could not be solved before within the given time limit. Further, we show in an ablation study that our enrichment components contribute considerably to the performance of the new ILP formulation.

Subject Classification

ACM Subject Classification
  • Human-centered computing → Graph drawings
  • Mathematics of computing → Integer programming
  • Mathematics of computing → Permutations and combinations
Keywords
  • Storyline drawing
  • crossing minimization
  • integer linear programming
  • algorithm engineering
  • computational experiments

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Vanessa Peña Araya, Tong Xue, Emmanuel Pietriga, Laurent Amsaleg, and Anastasia Bezerianos. Hyperstorylines: Interactively untangling dynamic hypergraphs. Inf. Vis., 21(1):38-62, 2022. URL: https://doi.org/10.1177/14738716211045007.
  2. Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis. Graph Drawing: Algorithms for the Visualization of Graphs. Prentice-Hall, 1999. Google Scholar
  3. Christoph Buchheim, Angelika Wiegele, and Lanbo Zheng. Exact algorithms for the quadratic linear ordering problem. INFORMS J. Comput., 22(1):168-177, 2010. URL: https://doi.org/10.1287/IJOC.1090.0318.
  4. Jonas Charfreitag, Michael Jünger, Sven Mallach, and Petra Mutzel. McSparse: Exact Solutions of Sparse Maximum Cut and Sparse Unconstrained Binary Quadratic Optimization Problems, pages 54-66. Proc. Symposium on Algorithm Engineering and Experiments (ALENEX'22), 2022. URL: https://doi.org/10.1137/1.9781611977042.5.
  5. Alexander Dobler, Michael Jünger, Paul J. Jünger, Julian Meffert, Petra Mutzel, and Martin Nöllenburg. Revisiting ILP Models for Exact Crossing Minimization in Storyline Drawings: Supplementary Material. Software (visited on 2024-10-14). URL: https://doi.org/10.17605/OSF.IO/3BUA2.
  6. Alexander Dobler, Michael Jünger, Paul Jünger, Julian Meffert, Petra Mutzel, and Martin Nöllenburg. Revisiting ILP models for exact crossing minimization in storyline drawings. CoRR, abs/2409.02858, 2024. URL: https://doi.org/10.48550/arXiv.2409.02858.
  7. Alexander Dobler, Martin Nöllenburg, Daniel Stojanovic, Anaïs Villedieu, and Jules Wulms. Crossing minimization in time interval storylines. CoRR, abs/2302.14213, 2023. URL: https://doi.org/10.48550/arXiv.2302.14213.
  8. Michael Forster. A fast and simple heuristic for constrained two-level crossing reduction. In János Pach, editor, Proc. Graph Drawing and Network Visualization (GD'04), volume 3383 of LNCS, pages 206-216. Springer, 2004. URL: https://doi.org/10.1007/978-3-540-31843-9_22.
  9. Michael R. Garey and David S. Johnson. Crossing number is NP-complete. SIAM J. on Algebraic and Discrete Methods, 4(3):312-316, 1983. URL: https://doi.org/10.1137/0604033.
  10. Emilio Di Giacomo, Walter Didimo, Giuseppe Liotta, Fabrizio Montecchiani, and Alessandra Tappini. Storyline visualizations with ubiquitous actors. In David Auber and Pavel Valtr, editors, Proc. Graph Drawing and Network Visualization (GD'20), volume 12590 of LNCS, pages 324-332. Springer, 2020. URL: https://doi.org/10.1007/978-3-030-68766-3_25.
  11. Martin Gronemann, Michael Jünger, Frauke Liers, and Francesco Mambelli. Crossing minimization in storyline visualization. In Yifan Hu and Martin Nöllenburg, editors, Proc. Graph Drawing and Network Visualization (GD'16), volume 9801 of LNCS, pages 367-381. Springer, 2016. URL: https://doi.org/10.1007/978-3-319-50106-2_29.
  12. Martin Grötschel, Michael Jünger, and Gerhard Reinelt. Facets of the linear ordering polytope. Math. Program., 33(1):43-60, 1985. URL: https://doi.org/10.1007/BF01582010.
  13. Patrick Healy and Nikola S. Nikolov. Hierarchical drawing algorithms. In Roberto Tamassia, editor, Handbook on Graph Drawing and Visualization, chapter 13, pages 409-453. Chapman and Hall/CRC, 2013. Google Scholar
  14. Tim Herrmann. Storyline-Visualisierungen für wissenschaftliche Kollaborationsgraphen. Master’s thesis, Universität Würzburg, 2022. URL: https://www1.pub.informatik.uni-wuerzburg.de/pub/theses/2022-herrmann-masterarbeit.pdf.
  15. Victor Hugo. Les Misérables. Jules Rouff et Cie editeurs, Paris, 1862. Google Scholar
  16. Donald E. Knuth. The Stanford GraphBase - A platform for combinatorial computing. ACM, 1993. Google Scholar
  17. Irina Kostitsyna, Martin Nöllenburg, Valentin Polishchuk, André Schulz, and Darren Strash. On minimizing crossings in storyline visualizations. In Emilio Di Giacomo and Anna Lubiw, editors, Proc. Graph Drawing and Network Visualization (GD'15), volume 9411 of LNCS, pages 192-198. Springer, 2015. URL: https://doi.org/10.1007/978-3-319-27261-0_16.
  18. Shixia Liu, Yingcai Wu, Enxun Wei, Mengchen Liu, and Yang Liu. Storyflow: Tracking the evolution of stories. IEEE Trans. Vis. Comput. Graph., 19(12):2436-2445, 2013. URL: https://doi.org/10.1109/TVCG.2013.196.
  19. Randall Munroe. Movie narrative charts, 2009. URL: https://xkcd.com/657/.
  20. Michael Ogawa and Kwan-Liu Ma. Software evolution storylines. In Alexandru C. Telea, Carsten Görg, and Steven P. Reiss, editors, Software Visualization (SoftVis'10), pages 35-42. ACM, 2010. URL: https://doi.org/10.1145/1879211.1879219.
  21. Helen Purchase. Which aesthetic has the greatest effect on human understanding? In Proc. Graph Drawing and Network Visualization (GD'97), volume 1353 of LNCS, pages 248-261. Springer, 1997. URL: https://doi.org/10.1007/3-540-63938-1_67.
  22. Marcus Schaefer. Crossing Numbers of Graphs. CRC Press, 2018. Google Scholar
  23. Yang Shi, Chris Bryan, Sridatt Bhamidipati, Ying Zhao, Yaoxue Zhang, and Kwan-Liu Ma. Meetingvis: Visual narratives to assist in recalling meeting context and content. IEEE Trans. Vis. Comput. Graph., 24(6):1918-1929, 2018. URL: https://doi.org/10.1109/TVCG.2018.2816203.
  24. Caterina De Simone. The cut polytope and the boolean quadric polytope. Discret. Math., 79(1):71-75, 1990. URL: https://doi.org/10.1016/0012-365X(90)90056-N.
  25. Kozo Sugiyama, Shojiro Tagawa, and Mitsuhiko Toda. Methods for visual understanding of hierarchical system structures. IEEE Trans. Syst. Man Cybern., 11(2):109-125, 1981. URL: https://doi.org/10.1109/TSMC.1981.4308636.
  26. Y. Tanahashi. Movie data set, 2013. URL: http://vis.cs.ucdavis.edu/~tanahashi/datadownloads/storyline visualizations/story_data.tar.
  27. Yuzuru Tanahashi, Chien-Hsin Hsueh, and Kwan-Liu Ma. An efficient framework for generating storyline visualizations from streaming data. IEEE Trans. Vis. Comput. Graph., 21(6):730-742, 2015. URL: https://doi.org/10.1109/TVCG.2015.2392771.
  28. Yuzuru Tanahashi and Kwan-Liu Ma. Design considerations for optimizing storyline visualizations. IEEE Trans. Vis. Comput. Graph., 18(12):2679-2688, 2012. URL: https://doi.org/10.1109/TVCG.2012.212.
  29. Tan Tang, Renzhong Li, Xinke Wu, Shuhan Liu, Johannes Knittel, Steffen Koch, Lingyun Yu, Peiran Ren, Thomas Ertl, and Yingcai Wu. Plotthread: Creating expressive storyline visualizations using reinforcement learning. IEEE Trans. Vis. Comput. Graph., 27(2):294-303, 2021. URL: https://doi.org/10.1109/TVCG.2020.3030467.
  30. Tan Tang, Sadia Rubab, Jiewen Lai, Weiwei Cui, Lingyun Yu, and Yingcai Wu. iStoryline: Effective convergence to hand-drawn storylines. IEEE Trans. Vis. Comput. Graph., 25(1):769-778, 2019. URL: https://doi.org/10.1109/TVCG.2018.2864899.
  31. Thomas C. van Dijk, Martin Fink, Norbert Fischer, Fabian Lipp, Peter Markfelder, Alexander Ravsky, Subhash Suri, and Alexander Wolff. Block crossings in storyline visualizations. J. Graph Algorithms Appl., 21(5):873-913, 2017. URL: https://doi.org/10.7155/JGAA.00443.
  32. Thomas C. van Dijk, Fabian Lipp, Peter Markfelder, and Alexander Wolff. Computing storyline visualizations with few block crossings. In Fabrizio Frati and Kwan-Liu Ma, editors, Proc. Graph Drawing and Network Visualization (GD'17), volume 10692 of LNCS, pages 365-378. Springer, 2017. URL: https://doi.org/10.1007/978-3-319-73915-1_29.
  33. Günter Wallner, Letian Wang, and Claire Dormann. Visualizing the spatio-temporal evolution of gameplay using storyline visualization: A study with league of legends. Proc. ACM Hum. Comput. Interact., 7(CHI):1002-1024, 2023. URL: https://doi.org/10.1145/3611058.
  34. Yunchao Wang, Guodao Sun, Zihao Zhu, Tong Li, Ling Chen, and Ronghua Liang. E²Storyline: Visualizing the relationship with triplet entities and event discovery. ACM Trans. Intell. Syst. Technol., 15(1):16:1-16:26, 2024. URL: https://doi.org/10.1145/3633519.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail