On the Complexity of Recognizing k^+-Real Face Graphs

Authors Michael A. Bekos , Giuseppe Di Battista , Emilio Di Giacomo , Walter Didimo , Michael Kaufmann , Fabrizio Montecchiani



PDF
Thumbnail PDF

File

LIPIcs.GD.2024.32.pdf
  • Filesize: 1.4 MB
  • 22 pages

Document Identifiers

Author Details

Michael A. Bekos
  • University of Ioannina, Greece
Giuseppe Di Battista
  • University of Roma Tre, Italy
Emilio Di Giacomo
  • University of Perugia, Italy
Walter Didimo
  • University of Perugia, Italy
Michael Kaufmann
  • University of Tübingen, Germany
Fabrizio Montecchiani
  • University of Perugia, Italy

Acknowledgements

Research started at the Dagstuhl Seminar: Beyond-Planar Graphs: Models, Structures and Geometric Representations; seminar number: 24062, February 4-9, 2024.

Cite AsGet BibTex

Michael A. Bekos, Giuseppe Di Battista, Emilio Di Giacomo, Walter Didimo, Michael Kaufmann, and Fabrizio Montecchiani. On the Complexity of Recognizing k^+-Real Face Graphs. In 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 320, pp. 32:1-32:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.GD.2024.32

Abstract

A nonplanar drawing Γ of a graph G divides the plane into topologically connected regions, called faces (or cells). The boundary of each face is formed by vertices, crossings, and edge segments. Given a positive integer k, we say that Γ is a k^+-real face drawing of G if the boundary of each face of Γ contains at least k vertices of G. The study of k^+-real face drawings started in a paper by Binucci et al. (WG 2023), where edge density bounds and relationships with other beyond-planar graph classes are proved. In this paper, we investigate the complexity of recognizing k^+-real face graphs, i.e., graphs that admit a k^+-real face drawing. We study both the general unconstrained scenario and the 2-layer scenario in which the graph is bipartite, the vertices of the two partition sets lie on two distinct horizontal layers, and the edges are straight-line segments. We give NP-completeness results for the unconstrained scenario and efficient recognition algorithms for the 2-layer setting.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Graph algorithms
  • Mathematics of computing → Graph theory
  • Theory of computation → Graph algorithms analysis
Keywords
  • Beyond planarity
  • k^+-real face drawings
  • 2-layer drawings
  • recognition algorithm
  • NP-hardness

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Abu Reyan Ahmed, Patrizio Angelini, Michael A. Bekos, Giuseppe Di Battista, Michael Kaufmann, Philipp Kindermann, Stephen G. Kobourov, Martin Nöllenburg, Antonios Symvonis, Anaïs Villedieu, and Markus Wallinger. Splitting vertices in 2-layer graph drawings. IEEE Computer Graphics and Applications, 43(3):24-35, 2023. URL: https://doi.org/10.1109/MCG.2023.3264244.
  2. Michael A. Bekos, Sabine Cornelsen, Luca Grilli, Seok-Hee Hong, and Michael Kaufmann. On the recognition of fan-planar and maximal outer-fan-planar graphs. In Christian A. Duncan and Antonios Symvonis, editors, Graph Drawing - 22nd International Symposium, GD 2014, Würzburg, Germany, September 24-26, 2014, Revised Selected Papers, volume 8871 of Lecture Notes in Computer Science, pages 198-209. Springer, 2014. URL: https://doi.org/10.1007/978-3-662-45803-7_17.
  3. Carla Binucci, Markus Chimani, Walter Didimo, Martin Gronemann, Karsten Klein, Jan Kratochvíl, Fabrizio Montecchiani, and Ioannis G. Tollis. 2-layer fan-planarity: From caterpillar to stegosaurus. In GD, volume 9411 of Lecture Notes in Computer Science, pages 281-294. Springer, 2015. URL: https://doi.org/10.1007/978-3-319-27261-0_24.
  4. Carla Binucci, Markus Chimani, Walter Didimo, Martin Gronemann, Karsten Klein, Jan Kratochvíl, Fabrizio Montecchiani, and Ioannis G. Tollis. Algorithms and characterizations for 2-layer fan-planarity: From caterpillar to stegosaurus. J. Graph Algorithms Appl., 21(1):81-102, 2017. URL: https://doi.org/10.7155/jgaa.00398.
  5. Carla Binucci, Giuseppe Di Battista, Walter Didimo, Vida Dujmović, Seok-Hee Hong, Michael Kaufmann, Giuseppe Liotta, Pat Morin, and Alessandra Tappini. Graphs drawn with some vertices per face: Density and relationships. IEEE Access, 12:68828-68846, 2024. URL: https://doi.org/10.1109/ACCESS.2024.3401078.
  6. Carla Binucci, Giuseppe Di Battista, Walter Didimo, Seok-Hee Hong, Michael Kaufmann, Giuseppe Liotta, Pat Morin, and Alessandra Tappini. Nonplanar graph drawings with k vertices per face. In Daniël Paulusma and Bernard Ries, editors, Graph-Theoretic Concepts in Computer Science - 49th International Workshop, WG 2023, Fribourg, Switzerland, June 28-30, 2023, Revised Selected Papers, volume 14093 of Lecture Notes in Computer Science, pages 86-100. Springer, 2023. URL: https://doi.org/10.1007/978-3-031-43380-1_7.
  7. Carla Binucci, Emilio Di Giacomo, Walter Didimo, Fabrizio Montecchiani, Maurizio Patrignani, Antonios Symvonis, and Ioannis G. Tollis. Fan-planarity: Properties and complexity. Theor. Comput. Sci., 589:76-86, 2015. URL: https://doi.org/10.1016/j.tcs.2015.04.020.
  8. Franz J. Brandenburg. Recognizing optimal 1-planar graphs in linear time. Algorithmica, 80(1):1-28, 2018. URL: https://doi.org/10.1007/S00453-016-0226-8.
  9. Emilio Di Giacomo, Walter Didimo, Peter Eades, and Giuseppe Liotta. 2-layer right angle crossing drawings. Algorithmica, 68(4):954-997, 2014. URL: https://doi.org/10.1007/S00453-012-9706-7.
  10. Walter Didimo. Density of straight-line 1-planar graph drawings. Inf. Process. Lett., 113(7):236-240, 2013. URL: https://doi.org/10.1016/j.ipl.2013.01.013.
  11. Walter Didimo. Right angle crossing drawings of graphs. In Beyond Planar Graphs, pages 149-169. Springer, 2020. URL: https://doi.org/10.1007/978-981-15-6533-5_9.
  12. Walter Didimo, Peter Eades, and Giuseppe Liotta. Drawing graphs with right angle crossings. Theor. Comput. Sci., 412(39):5156-5166, 2011. URL: https://doi.org/10.1016/j.tcs.2011.05.025.
  13. Walter Didimo, Giuseppe Liotta, and Fabrizio Montecchiani. A survey on graph drawing beyond planarity. ACM Comput. Surv., 52(1):4:1-4:37, 2019. URL: https://doi.org/10.1145/3301281.
  14. Peter Eades, Brendan D. McKay, and Nicholas C. Wormald. On an edge crossing problem. In 9th Australian Computer Science Conference, pages 327-334, 1986. URL: https://api.semanticscholar.org/CorpusID:116397155.
  15. Peter Eades and Sue Whitesides. Drawing graphs in two layers. Theor. Comput. Sci., 131(2):361-374, 1994. URL: https://doi.org/10.1016/0304-3975(94)90179-1.
  16. Peter Eades and Nicholas C. Wormald. Edge crossings in drawings of bipartite graphs. Algorithmica, 11(4):379-403, 1994. URL: https://doi.org/10.1007/BF01187020.
  17. M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, 1979. Google Scholar
  18. Seok-Hee Hong. Beyond planar graphs: Introduction. In Beyond Planar Graphs, pages 1-9. Springer, 2020. URL: https://doi.org/10.1007/978-981-15-6533-5_1.
  19. Seok-Hee Hong, Michael Kaufmann, Stephen G. Kobourov, and János Pach. Beyond-planar graphs: Algorithmics and combinatorics (Dagstuhl Seminar 16452). Dagstuhl Reports, 6(11):35-62, 2016. URL: https://doi.org/10.4230/DagRep.6.11.35.
  20. Seok-Hee Hong and Hiroshi Nagamochi. A linear-time algorithm for testing full outer-2-planarity. Discret. Appl. Math., 255:234-257, 2019. URL: https://doi.org/10.1016/J.DAM.2018.08.018.
  21. Seok-Hee Hong and Takeshi Tokuyama, editors. Beyond Planar Graphs, Communications of NII Shonan Meetings. Springer, 2020. URL: https://doi.org/10.1007/978-981-15-6533-5.
  22. Michael Jünger and Petra Mutzel. 2-layer straightline crossing minimization: Performance of exact and heuristic algorithms. J. Graph Algorithms Appl., 1(1):1-25, 1997. URL: https://doi.org/10.7155/JGAA.00001.
  23. Michael Kaufmann, Boris Klemz, Kristin Knorr, Meghana M. Reddy, Felix Schröder, and Torsten Ueckerdt. The density formula: One lemma to bound them all. CoRR, abs/2311.06193, 2023. URL: https://doi.org/10.48550/arXiv.2311.06193.
  24. Stephen G. Kobourov, Giuseppe Liotta, and Fabrizio Montecchiani. An annotated bibliography on 1-planarity. Comput. Sci. Rev., 25:49-67, 2017. URL: https://doi.org/10.1016/j.cosrev.2017.06.002.
  25. Giordano Da Lozzo, Vít Jelínek, Jan Kratochvíl, and Ignaz Rutter. Planar embeddings with small and uniform faces. In Hee-Kap Ahn and Chan-Su Shin, editors, Algorithms and Computation - 25th International Symposium, ISAAC 2014, Jeonju, Korea, December 15-17, 2014, Proceedings, volume 8889 of Lecture Notes in Computer Science, pages 633-645. Springer, 2014. URL: https://doi.org/10.1007/978-3-319-13075-0_50.
  26. János Pach and Géza Tóth. Graphs drawn with few crossings per edge. Combinatorica, 17(3):427-439, 1997. URL: https://doi.org/10.1007/BF01215922.
  27. Vicente Valls, Rafael Martí, and Pilar Lino. A branch and bound algorithm for minimizing the number of crossing arcs in bipartite graphs. European Journal of Operational Research, 90(2):303-319, 1996. URL: https://doi.org/10.1016/0377-2217(95)00356-8.
  28. David R. Wood. 2-layer graph drawings with bounded pathwidth. J. Graph Algorithms Appl., 27(9):843-851, 2023. URL: https://doi.org/10.7155/JGAA.00647.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail