Crossing Numbers of Beyond Planar Graphs Re-Revisited: A Framework Approach

Authors Markus Chimani , Torben Donzelmann, Nick Kloster, Melissa Koch, Jan-Jakob Völlering, Mirko H. Wagner



PDF
Thumbnail PDF

File

LIPIcs.GD.2024.33.pdf
  • Filesize: 0.84 MB
  • 17 pages

Document Identifiers

Author Details

Markus Chimani
  • Theoretical Computer Science, Osnabrück University, Germany
Torben Donzelmann
  • Theoretical Computer Science, Osnabrück University, Germany
Nick Kloster
  • Theoretical Computer Science, Osnabrück University, Germany
Melissa Koch
  • Theoretical Computer Science, Osnabrück University, Germany
Jan-Jakob Völlering
  • Theoretical Computer Science, Osnabrück University, Germany
Mirko H. Wagner
  • Theoretical Computer Science, Osnabrück University, Germany

Cite AsGet BibTex

Markus Chimani, Torben Donzelmann, Nick Kloster, Melissa Koch, Jan-Jakob Völlering, and Mirko H. Wagner. Crossing Numbers of Beyond Planar Graphs Re-Revisited: A Framework Approach. In 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 320, pp. 33:1-33:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.GD.2024.33

Abstract

Beyond planarity concepts (prominent examples include k-planarity or fan-planarity) apply certain restrictions on the allowed patterns of crossings in drawings. It is natural to ask, how much the number of crossings may increase over the traditional (unrestricted) crossing number. Previous approaches to bound such ratios, e.g. [Markus Chimani et al., 2022; Nathan van Beusekom et al., 2022], require very specialized constructions and arguments for each considered beyond planarity concept, and mostly only yield asymptotically non-tight bounds. We propose a very general proof framework that allows us to obtain asymptotically tight bounds, and where the concept-specific parts of the proof typically boil down to a couple of lines. We show the strength of our approach by giving improved or first bounds for several beyond planarity concepts.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Graph theory
Keywords
  • Beyond planarity
  • crossing number
  • crossing ratio
  • proof framework

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Bernardo M. Ábrego and Silvia Fernández-Merchant. A lower bound for the rectilinear crossing number. Graphs Comb., 21(3):293-300, September 2005. URL: https://doi.org/10.1007/s00373-005-0612-5.
  2. Miklós Ajtai, Vašek Chvátal, Monroe Monty Newborn, and Endre Szemerédi. Crossing-free subgraphs. In Theory and Practice of Combinatorics, volume 60 of North-Holland Mathematics Studies, pages 9-12. North-Holland, 1982. Google Scholar
  3. Michael O. Albertson. Chromatic number, independence ratio, and crossing number. Ars Math. Contemp., 1(1):1-6, 2008. URL: https://doi.org/10.26493/1855-3974.10.2d0.
  4. Christian Bachmaier, Franz J. Brandenburg, Kathrin Hanauer, Daniel Neuwirth, and Josef Reislhuber. Nic-planar graphs. Discret. Appl. Math., 232:23-40, 2017. URL: https://doi.org/10.1016/j.dam.2017.08.015.
  5. Sang Won Bae, Jean-Francois Baffier, Jinhee Chun, Peter Eades, Kord Eickmeyer, Luca Grilli, Seok-Hee Hong, Matias Korman, Fabrizio Montecchiani, Ignaz Rutter, et al. Gap-planar graphs. Theoretical Computer Science, 745:36-52, 2018. Google Scholar
  6. Sang Won Bae, Jean-François Baffier, Jinhee Chun, Peter Eades, Kord Eickmeyer, Luca Grilli, Seok-Hee Hong, Matias Korman, Fabrizio Montecchiani, Ignaz Rutter, and Csaba D. Tóth. Gap-planar graphs. In Fabrizio Frati and Kwan-Liu Ma, editors, Graph Drawing and Network Visualization - 25th International Symposium, GD 2017, Boston, MA, USA, September 25-27, 2017, Revised Selected Papers, volume 10692 of Lecture Notes in Computer Science, pages 531-545. Springer, 2017. URL: https://doi.org/10.1007/978-3-319-73915-1_41.
  7. Carla Binucci, Emilio Di Giacomo, Walter Didimo, Fabrizio Montecchiani, Maurizio Patrignani, Antonios Symvonis, and Ioannis G. Tollis. Fan-planarity: Properties and complexity. Theor. Comput. Sci., 589:76-86, 2015. URL: https://doi.org/10.1016/j.tcs.2015.04.020.
  8. Franz J. Brandenburg. On fan-crossing graphs. Theor. Comput. Sci., 841:39-49, 2020. URL: https://doi.org/10.1016/j.tcs.2020.07.002.
  9. Otfried Cheong, Henry Förster, Julia Katheder, Maximilian Pfister, and Lena Schlipf. Weakly and strongly fan-planar graphs. In Michael A. Bekos and Markus Chimani, editors, Graph Drawing and Network Visualization - 31st International Symposium, GD 2023, Isola delle Femmine, Palermo, Italy, September 20-22, 2023, Revised Selected Papers, Part I, volume 14465 of Lecture Notes in Computer Science, pages 53-68. Springer, 2023. URL: https://doi.org/10.1007/978-3-031-49272-3_4.
  10. Otfried Cheong, Sariel Har-Peled, Heuna Kim, and Hyo-Sil Kim. On the number of edges of fan-crossing free graphs. Algorithmica, 73(4):673-695, 2015. URL: https://doi.org/10.1007/s00453-014-9935-z.
  11. Markus Chimani, Torben Donzelmann, Nick Kloster, Melissa Koch, Jan-Jakob Völlering, and Mirko H. Wagner. Crossing numbers of beyond planar graphs re-revisited: A framework approach, 2024. URL: https://arxiv.org/abs/2407.05057.
  12. Markus Chimani, Philipp Kindermann, Fabrizio Montecchiani, and Pavel Valtr. Crossing numbers of beyond-planar graphs. In Daniel Archambault and Csaba D. Tóth, editors, Graph Drawing and Network Visualization - 27th International Symposium, GD 2019, Prague, Czech Republic, September 17-20, 2019, Proceedings, volume 11904 of Lecture Notes in Computer Science, pages 78-86. Springer, 2019. URL: https://doi.org/10.1007/978-3-030-35802-0_6.
  13. Markus Chimani, Philipp Kindermann, Fabrizio Montecchiani, and Pavel Valtr. Crossing numbers of beyond-planar graphs. Theor. Comput. Sci., 898:44-49, 2022. URL: https://doi.org/10.1016/j.tcs.2021.10.016.
  14. Walter Didimo, Peter Eades, and Giuseppe Liotta. Drawing graphs with right angle crossings. Theor. Comput. Sci., 412(39):5156-5166, 2011. URL: https://doi.org/10.1016/j.tcs.2011.05.025.
  15. Walter Didimo, Giuseppe Liotta, and Fabrizio Montecchiani. A survey on graph drawing beyond planarity. ACM Comput. Surv., 52(1):4:1-4:37, 2019. URL: https://doi.org/10.1145/3301281.
  16. Graeme Gange, Peter J. Stuckey, and Kim Marriott. Optimal k-level planarization and crossing minimization. In Ulrik Brandes and Sabine Cornelsen, editors, Graph Drawing - 18th International Symposium, GD 2010, Konstanz, Germany, September 21-24, 2010. Revised Selected Papers, volume 6502 of Lecture Notes in Computer Science, pages 238-249. Springer, 2010. URL: https://doi.org/10.1007/978-3-642-18469-7_22.
  17. Seok-Hee Hong and Takeshi Tokuyama, editors. Beyond Planar Graphs. Communications of NII Shonan Meetings. Springer, 2020. Google Scholar
  18. Kazumasa Ishiguro. The minimum non-crossing edge number of graphs. Talk at 20th Workshop on Topological Graph Theory, Yokohama National University, Japan, 2008. Google Scholar
  19. Michael Kaufmann and Torsten Ueckerdt. The density of fan-planar graphs. Electron. J. Comb., 29(1):#1.29, 2022. URL: https://doi.org/10.37236/10521.
  20. Boris Klemz, Kristin Knorr, Meghana M. Reddy, and Felix Schröder. Simplifying non-simple fan-planar drawings. In Helen C. Purchase and Ignaz Rutter, editors, Graph Drawing and Network Visualization - 29th International Symposium, GD 2021, Tübingen, Germany, September 14-17, 2021, Revised Selected Papers, volume 12868 of Lecture Notes in Computer Science, pages 57-71. Springer, 2021. URL: https://doi.org/10.1007/978-3-030-92931-2_4.
  21. Boris Klemz, Kristin Knorr, Meghana M. Reddy, and Felix Schröder. Simplifying non-simple fan-planar drawings. J. Graph Algorithms Appl., 27(2):147-172, 2023. URL: https://doi.org/10.7155/jgaa.00618.
  22. Tamás Kővári, Vera T. Sós, and Pál Turán. On a problem of K. Zarankiewicz. In Colloq. Math, volume 3, pages 50-57, 1954. Google Scholar
  23. Daniel Král' and Ladislav Stacho. Coloring plane graphs with independent crossings. J. Graph Theory, 64(3):184-205, 2010. URL: https://doi.org/10.1002/jgt.20448.
  24. Kazimierz Kuratowski. Sur le probleme des courbes gauches en topologie. Fundamenta mathematicae, 15(1):271-283, 1930. Google Scholar
  25. János Pach and Géza Tóth. Graphs drawn with few crossings per edge. Comb., 17(3):427-439, 1997. URL: https://doi.org/10.1007/BF01215922.
  26. Gerhard Ringel. Ein Sechsfarbenproblem auf der Kugel. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 29(1-2):107-117, 1965. Google Scholar
  27. Marcus Schaefer. The graph crossing number and its variants: A survey. The electronic journal of combinatorics, DS21(Version 7, Apr 8, 2022), 2013-. Google Scholar
  28. Nathan van Beusekom, Irene Parada, and Bettina Speckmann. Crossing numbers of beyond-planar graphs revisited. J. Graph Algorithms Appl., 26(1):149-170, 2022. URL: https://doi.org/10.7155/jgaa.00586.
  29. Xin Zhang. Drawing complete multipartite graphs on the plane with restrictions on crossings. Acta Mathematica Sinica, English Series, 30(12):2045-2053, 2014. Google Scholar
  30. Xin Zhang and Guizhen Liu. The structure of plane graphs with independent crossings and its applications to coloring problems. Central European Journal of Mathematics, 11:308-321, 2013. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail