Separable Drawings: Extendability and Crossing-Free Hamiltonian Cycles

Authors Oswin Aichholzer , Joachim Orthaber , Birgit Vogtenhuber



PDF
Thumbnail PDF

File

LIPIcs.GD.2024.34.pdf
  • Filesize: 0.95 MB
  • 17 pages

Document Identifiers

Author Details

Oswin Aichholzer
  • Institute of Software Technology, Graz University of Technology, Austria
Joachim Orthaber
  • Institute of Software Technology, Graz University of Technology, Austria
Birgit Vogtenhuber
  • Institute of Software Technology, Graz University of Technology, Austria

Acknowledgements

We thank Alexandra Weinberger for fruitful discussions during the early stages of our research and we thank the anonymous referees for helpful comments on the paper.

Cite AsGet BibTex

Oswin Aichholzer, Joachim Orthaber, and Birgit Vogtenhuber. Separable Drawings: Extendability and Crossing-Free Hamiltonian Cycles. In 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 320, pp. 34:1-34:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.GD.2024.34

Abstract

Generalizing pseudospherical drawings, we introduce a new class of simple drawings, which we call separable drawings. In a separable drawing, every edge can be closed to a simple curve that intersects each other edge at most once. Curves of different edges might interact arbitrarily. Most notably, we show that (1) every separable drawing of any graph on n vertices in the plane can be extended to a simple drawing of the complete graph K_n, (2) every separable drawing of K_n contains a crossing-free Hamiltonian cycle and is plane Hamiltonian connected, and (3) every generalized convex drawing and every 2-page book drawing is separable. Further, the class of separable drawings is a proper superclass of the union of generalized convex and 2-page book drawings. Hence, our results on plane Hamiltonicity extend recent work on generalized convex drawings by Bergold et al. (SoCG 2024).

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Combinatorics
  • Mathematics of computing → Graph theory
  • Theory of computation → Computational geometry
Keywords
  • Simple drawings
  • Pseudospherical drawings
  • Generalized convex drawings
  • Plane Hamiltonicity
  • Extendability of drawings
  • Recognition of drawing classes

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Bernardo M. Ábrego, Oswin Aichholzer, Silvia Fernández-Merchant, Thomas Hackl, Jürgen Pammer, Alexander Pilz, Pedro Ramos, Gelasio Salazar, and Birgit Vogtenhuber. All good drawings of small complete graphs. In Proceedings of the 31st European Workshop on Computational Geometry (EuroCG 2015), pages 57-60, 2015. URL: http://eurocg15.fri.uni-lj.si/pub/eurocg15-book-of-abstracts.pdf.
  2. Oswin Aichholzer, Alfredo García, Javier Tejel, Birgit Vogtenhuber, and Alexandra Weinberger. Twisted ways to find plane structures in simple drawings of complete graphs. Discrete & Computational Geometry, 30:40-66, 2024. URL: https://doi.org/10.1007/s00454-023-00610-0.
  3. Oswin Aichholzer, Joachim Orthaber, and Birgit Vogtenhuber. Towards crossing-free Hamiltonian cycles in simple drawings of complete graphs. Computing in Geometry and Topology, 3(2):5:1-5:30, 2024. URL: https://doi.org/10.57717/cgt.v3i2.47.
  4. Alan Arroyo, Martin Derka, and Irene Parada. Extending simple drawings. In Proceedings of the 27th International Symposium on Graph Drawing and Network Visualization (GD 2019), pages 230-243, 2019. URL: https://doi.org/10.1007/978-3-030-35802-0_18.
  5. Alan Arroyo, Fabian Klute, Irene Parada, Raimund Seidel, Birgit Vogtenhuber, and Tilo Wiedera. Inserting one edge into a simple drawing is hard. Discrete & Computational Geometry, 69(3):745-770, 2023. URL: https://doi.org/10.1007/s00454-022-00394-9.
  6. Alan Arroyo, Dan McQuillan, R. Bruce Richter, and Gelasio Salazar. Convex drawings of the complete graph: topology meets geometry. Ars Mathematica Contemporanea, 22(3):27, 2022. URL: https://doi.org/10.26493/1855-3974.2134.ac9.
  7. Alan Arroyo, R. Bruce Richter, and Matthew Sunohara. Extending drawings of complete graphs into arrangements of pseudocircles. SIAM Journal on Discrete Mathematics, 35(2):1050-1076, 2021. URL: https://doi.org/10.1137/20M1313234.
  8. Helena Bergold, Stefan Felsner, Meghana M. Reddy, Joachim Orthaber, and Manfred Scheucher. Plane Hamiltonian cycles in convex drawings. In Proceedings of the 40th International Symposium on Computational Geometry (SoCG 2024), pages 18:1-18:16, 2024. URL: https://doi.org/10.4230/LIPIcs.SoCG.2024.18.
  9. Robert Ganian, Thekla Hamm, Fabian Klute, Irene Parada, and Birgit Vogtenhuber. Crossing-optimal extension of simple drawings. In Proceedings of the 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021), pages 72:1-72:17, 2021. URL: https://doi.org/10.4230/LIPICS.ICALP.2021.72.
  10. Emeric Gioan. Complete graph drawings up to triangle mutations. Discrete & Computational Geometry, 67(4):985-1022, 2022. URL: https://doi.org/10.1007/s00454-021-00339-8.
  11. Péter Hajnal, Alexander Igamberdiev, Günter Rote, and André Schulz. Saturated simple and 2-simple topological graphs with few edges. Journal of Graph Algorithms and Applications, 22(1):117-138, 2018. URL: https://doi.org/10.7155/jgaa.00460.
  12. Heiko Harborth and Ingrid Mengersen. Edges without crossings in drawings of complete graphs. Journal of Combinatorial Theory, Series B, 17(3):299-311, 1974. URL: https://doi.org/10.1016/0095-8956(74)90035-5.
  13. Jan Kynčl. Simple realizability of complete abstract topological graphs in P. Discrete & Computational Geometry, 45(3):383-399, 2011. URL: https://doi.org/10.1007/s00454-010-9320-x.
  14. Jan Kynčl. Improved enumeration of simple topological graphs. Discrete & Computational Geometry, 50(3):727-770, 2013. URL: https://doi.org/10.1007/s00454-013-9535-8.
  15. Jan Kynčl. Simple realizability of complete abstract topological graphs simplified. Discrete & Computational Geometry, 64(1):1-27, 2020. URL: https://doi.org/10.1007/s00454-020-00204-0.
  16. Jan Kynčl and Jan Soukup. Extending simple monotone drawings. In Proceedings of the 40th European Workshop on Computational Geometry (EuroCG 2024), pages 48:1-48:6, 2024. URL: https://eurocg2024.math.uoi.gr/data/uploads/paper_48.pdf, URL: https://arxiv.org/abs/2312.17675.
  17. Friedrich Levi. Die Teilung der projektiven Ebene durch Gerade oder Pseudogerade. Berichte über die Verhandlungen der Sächsischen Akademie der Wissenschaften zu Leipzig, Mathematisch-Physische Klasse, 78:256-267, 1926. In German. Google Scholar
  18. János Pach, József Solymosi, and Géza Tóth. Unavoidable configurations in complete topological graphs. Discrete & Computational Geometry, 30(2):311-320, 2003. URL: https://doi.org/10.1007/s00454-003-0012-9.
  19. Alexander Pilz. Planar 3-SAT with a clause/variable cycle. Discrete Mathematics & Theoretical Computer Science, 21(3):18:1-18:20, 2019. URL: https://doi.org/10.23638/DMTCS-21-3-18.
  20. Nabil H. Rafla. The Good Drawings D_n of the Complete Graph K_n. PhD thesis, McGill University, Montreal, 1988. URL: https://escholarship.mcgill.ca/concern/theses/x346d4920.
  21. Marcus Schaefer. Taking a detour; or, Gioan’s theorem, and pseudolinear drawings of complete graphs. Discrete & Computational Geometry, 66(1):12-31, 2021. URL: https://doi.org/10.1007/s00454-021-00296-2.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail