Level Planarity Is More Difficult Than We Thought (Poster Abstract)

Authors Simon D. Fink , Matthias Pfretzschner , Ignaz Rutter , Peter Stumpf



PDF
Thumbnail PDF

File

LIPIcs.GD.2024.50.pdf
  • Filesize: 0.66 MB
  • 3 pages

Document Identifiers

Author Details

Simon D. Fink
  • Algorithms and Complexity Group, Technische Universität Wien, Austria
Matthias Pfretzschner
  • Faculty of Computer Science and Mathematics, Universität Passau, Germany
Ignaz Rutter
  • Faculty of Computer Science and Mathematics, Universität Passau, Germany
Peter Stumpf
  • Charles University, Prague, Czech Republic

Cite AsGet BibTex

Simon D. Fink, Matthias Pfretzschner, Ignaz Rutter, and Peter Stumpf. Level Planarity Is More Difficult Than We Thought (Poster Abstract). In 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 320, pp. 50:1-50:3, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.GD.2024.50

Abstract

We consider three simple quadratic-time algorithms for Level Planarity and give a level-planar instance that they either falsely classify as negative or for which they output a non-planar drawing.

Subject Classification

ACM Subject Classification
  • Human-centered computing → Graph drawings
Keywords
  • level planarity
  • 2-SAT
  • simple algorithm
  • counterexample

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Giuseppe Di Battista and Enrico Nardelli. Hierarchies and planarity theory. IEEE Transactions on Systems, Man and Cybernetics, 18(6):1035-1046, 1988. URL: https://doi.org/10.1109/21.23105.
  2. Guido Brückner, Ignaz Rutter, and Peter Stumpf. Level planarity: Transitivity vs. even crossings. In Therese Biedl and Andreas Kerren, editors, Proceedings of the 26th International Symposium on Graph Drawing and Network Visualization (GD '18), volume 11282 of Lecture Notes in Computer Science, pages 39-52. Springer, 2018. URL: https://doi.org/10.1007/978-3-030-04414-5_3.
  3. Guido Brückner, Ignaz Rutter, and Peter Stumpf. Level-planarity: Transitivity vs. even crossings. Electronic Journal of Combinatorics, 29(4), 2022. URL: https://doi.org/10.37236/10814.
  4. Radoslav Fulek, Michael J. Pelsmajer, Marcus Schaefer, and Daniel Štefankovič. Hanani-Tutte, monotone drawings, and level-planarity. In János Pach, editor, Thirty Essays on Geometric Graph Theory, pages 263-287. Springer, 2013. URL: https://doi.org/10.1007/978-1-4614-0110-0_14.
  5. Martin Harrigan and Patrick Healy. Practical level planarity testing and layout with embedding constraints. In Seok-Hee Hong, Takao Nishizeki, and Wu Quan, editors, Proceedings of the 15th International Symposium on Graph Drawing (GD '07), volume 4875 of Lecture Notes in Computer Science, pages 62-68. Springer, 2007. URL: https://doi.org/10.1007/978-3-540-77537-9_9.
  6. Patrick Healy and Ago Kuusik. Algorithms for multi-level graph planarity testing and layout. Theoretical Computer Science, 320(2-3):331-344, 2004. URL: https://doi.org/10.1016/J.TCS.2004.02.033.
  7. Lenwood S. Heath and Sriram V. Pemmaraju. Recognizing leveled-planar dags in linear time. In Franz-Josef Brandenburg, editor, Proceedings of the 3rd International Symposium on Graph Drawing (GD '95), volume 1027 of Lecture Notes in Computer Science, pages 300-311. Springer, 1995. URL: https://doi.org/10.1007/BFB0021813.
  8. Michael Jünger and Sebastian Leipert. Level planar embedding in linear time. In Jan Kratochvíl, editor, Proceedings of the 7th International Symposium on Graph Drawing (GD '99), volume 1731 of Lecture Notes in Computer Science, pages 72-81. Springer, 1999. URL: https://doi.org/10.1007/3-540-46648-7_7.
  9. Michael Jünger and Sebastian Leipert. Level planar embedding in linear time. Journal of Graph Algorithms and Applications, 6(1):67-113, 2002. URL: https://doi.org/10.7155/JGAA.00045.
  10. Michael Jünger, Sebastian Leipert, and Petra Mutzel. Pitfalls of using pq-trees in automatic graph drawing. In Giuseppe Di Battista, editor, Proceedings of the 5th International Symposium on Graph Drawing (GD '97), volume 1353 of Lecture Notes in Computer Science, pages 193-204. Springer, 1997. URL: https://doi.org/10.1007/3-540-63938-1_62.
  11. Michael Jünger, Sebastian Leipert, and Petra Mutzel. Level planarity testing in linear time. In Sue Whitesides, editor, Proceedings of the 6th International Symposium on Graph Drawing (GD '98), volume 1547 of Lecture Notes in Computer Science, pages 224-237. Springer, 1998. URL: https://doi.org/10.1007/3-540-37623-2_17.
  12. Bert Randerath, Ewald Speckenmeyer, Endre Boros, Peter L. Hammer, Alexander Kogan, Kazuhisa Makino, Bruno Simeone, and Ondrej Cepek. A satisfiability formulation of problems on level graphs. Electronic Notes Discreete Mathematics, 9:269-277, 2001. URL: https://doi.org/10.1016/S1571-0653(04)00327-0.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail