Note on Min- k-Planar Drawings of Graphs

Authors Petr Hliněný , Lili Ködmön



PDF
Thumbnail PDF

File

LIPIcs.GD.2024.8.pdf
  • Filesize: 0.63 MB
  • 10 pages

Document Identifiers

Author Details

Petr Hliněný
  • Masaryk University, Brno, Czech Republic
Lili Ködmön
  • Eötvös Loránd University, Budapest, Hungary

Cite AsGet BibTex

Petr Hliněný and Lili Ködmön. Note on Min- k-Planar Drawings of Graphs. In 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 320, pp. 8:1-8:10, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.GD.2024.8

Abstract

The k-planar graphs, which are (usually with small values of k such as 1,2,3) subject to recent intense research, admit a drawing in which edges are allowed to cross, but each one edge is allowed to carry at most k crossings. In recently introduced [Binucci et al., GD 2023] min-k-planar drawings of graphs, edges may possibly carry more than k crossings, but in any two crossing edges, at least one of the two must have at most k crossings. In both concepts, one may consider general drawings or a popular restricted concept of drawings called simple. In a simple drawing, every two edges are allowed to cross at most once, and any two edges which share a vertex are forbidden to cross. While, regarding the former concept, it is for k ≤ 3 known (but perhaps not widely known) that every general k-planar graph admits a simple k-planar drawing and this ceases to be true for any k ≤ 4, the difference between general and simple drawings in the latter concept is more striking. We prove that there exist graphs with a min-2-planar drawing, or with a min-3-planar drawing avoiding crossings of adjacent edges, which have no simple min-k-planar drawings for arbitrarily large fixed k.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Graph theory
  • Theory of computation → Computational geometry
Keywords
  • Crossing Number
  • Planarity
  • k-Planar Graph
  • Min-k-Planar Graph

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Eyal Ackerman. On topological graphs with at most four crossings per edge. Comput. Geom., 85:101574, 2019. URL: https://doi.org/10.1016/J.COMGEO.2019.101574.
  2. Pankaj K. Agarwal, Boris Aronov, János Pach, Richard Pollack, and Micha Sharir. Quasi-planar graphs have a linear number of edges. Comb., 17(1):1-9, 1997. URL: https://doi.org/10.1007/BF01196127.
  3. Michael A. Bekos, Michael Kaufmann, and Chrysanthi N. Raftopoulou. On the density of non-simple 3-planar graphs. In GD, volume 9801 of Lecture Notes in Computer Science, pages 344-356. Springer, 2016. URL: https://doi.org/10.1007/978-3-319-50106-2_27.
  4. Carla Binucci, Aaron Büngener, Giuseppe Di Battista, Walter Didimo, Vida Dujmovic, Seok-Hee Hong, Michael Kaufmann, Giuseppe Liotta, Pat Morin, and Alessandra Tappini. Min-k-planar drawings of graphs. In GD (1), volume 14465 of Lecture Notes in Computer Science, pages 39-52. Springer, 2023. URL: https://doi.org/10.1007/978-3-031-49272-3_3.
  5. Carla Binucci, Aaron Büngener, Giuseppe Di Battista, Walter Didimo, Vida Dujmovic, Seok-Hee Hong, Michael Kaufmann, Giuseppe Liotta, Pat Morin, and Alessandra Tappini. Min-k-planar drawings of graphs. CoRR, abs/2308.13401v3, 2024. URL: https://doi.org/10.48550/arXiv.2308.13401.
  6. Sergio Cabello and Bojan Mohar. Adding one edge to planar graphs makes crossing number and 1-planarity hard. SIAM J. Comput., 42(5):1803-1829, 2013. URL: https://doi.org/10.1137/120872310.
  7. Walter Didimo, Giuseppe Liotta, and Fabrizio Montecchiani. A survey on graph drawing beyond planarity. ACM Comput. Surv., 52(1):4:1-4:37, 2019. URL: https://doi.org/10.1145/3301281.
  8. P. Erdős and R. K. Guy. Crossing number problems. The American Mathematical Monthly, 80(1):52-58, 1973. URL: https://doi.org/10.2307/2319261.
  9. Alexander Grigoriev and Hans L. Bodlaender. Algorithms for graphs embeddable with few crossings per edge. Algorithmica, 49(1):1-11, 2007. URL: https://doi.org/10.1007/S00453-007-0010-X.
  10. Seok-Hee Hong and Takeshi Tokuyama, editors. Beyond Planar Graphs, Communications of NII Shonan Meetings. Springer, 2020. URL: https://doi.org/10.1007/978-981-15-6533-5.
  11. Boris Klemz, Kristin Knorr, Meghana M. Reddy, and Felix Schröder. Simplifying non-simple fan-planar drawings. J. Graph Algorithms Appl., 27(2):147-172, 2023. URL: https://doi.org/10.7155/JGAA.00618.
  12. Vladimir P. Korzhik and Bojan Mohar. Minimal obstructions for 1-immersions and hardness of 1-planarity testing. In GD, volume 5417 of Lecture Notes in Computer Science, pages 302-312. Springer, 2008. URL: https://doi.org/10.1007/978-3-642-00219-9_29.
  13. János Pach, Rados Radoicic, Gábor Tardos, and Géza Tóth. Improving the crossing lemma by finding more crossings in sparse graphs. Discret. Comput. Geom., 36(4):527-552, 2006. URL: https://doi.org/10.1007/S00454-006-1264-9.
  14. János Pach and Géza Tóth. Graphs drawn with few crossings per edge. Comb., 17(3):427-439, 1997. URL: https://doi.org/10.1007/BF01215922.
  15. János Pach and Géza Tóth. Which crossing number is it anyway? J. Comb. Theory, Ser. B, 80(2):225-246, 2000. URL: https://doi.org/10.1006/JCTB.2000.1978.
  16. Michael J. Pelsmajer, Marcus Schaefer, and Daniel Stefankovic. Odd crossing number and crossing number are not the same. Discret. Comput. Geom., 39(1-3):442-454, 2008. URL: https://doi.org/10.1007/S00454-008-9058-X.
  17. M. Schaefer. Crossing Numbers of Graphs. Discrete mathematics and its applications. CRC Press, Taylor & Francis Group, 2017. Google Scholar
  18. Von H. Schumacher. Zur struktur 1-planarer graphen. Mathematische Nachrichten, 125(1):291-300, 1986. URL: https://doi.org/10.1002/mana.19861250122.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail