,
Alfredo García
,
Javier Tejel
,
Birgit Vogtenhuber
,
Alexandra Weinberger
Creative Commons Attribution 4.0 International license
In a simple drawing of a graph, any two edges intersect in at most one point (either a common endpoint or a proper crossing). A simple drawing is generalized twisted if it fulfills certain rather specific constraints on how the edges are drawn. An abstract rotation system of a graph assigns to each vertex a cyclic order of its incident edges. A realizable rotation system is one that admits a simple drawing such that at each vertex, the edges emanate in that cyclic order, and a generalized twisted rotation system can be realized as a generalized twisted drawing. Generalized twisted drawings have initially been introduced to obtain improved bounds on the size of plane substructures in any simple drawing of K_n. They have since gained independent interest due to their surprising properties. However, the definition of generalized twisted drawings is very geometric and drawing-specific. In this paper, we develop characterizations of generalized twisted drawings that enable a purely combinatorial view on these drawings and lead to efficient recognition algorithms. Concretely, we show that for any n ≥ 7, an abstract rotation system of K_n is generalized twisted if and only if all subrotation systems induced by five vertices are generalized twisted. This implies a drawing-independent and concise characterization of generalized twistedness. Besides, the result yields a simple O(n⁵)-time algorithm to decide whether an abstract rotation system is generalized twisted and sheds new light on the structural features of simple drawings. We further develop a characterization via the rotations of a pair of vertices in a drawing, which we then use to derive an O(n²)-time algorithm to decide whether a realizable rotation system is generalized twisted.
@InProceedings{aichholzer_et_al:LIPIcs.GD.2025.25,
author = {Aichholzer, Oswin and Garc{\'\i}a, Alfredo and Tejel, Javier and Vogtenhuber, Birgit and Weinberger, Alexandra},
title = {{Characterizing and Recognizing Twistedness}},
booktitle = {33rd International Symposium on Graph Drawing and Network Visualization (GD 2025)},
pages = {25:1--25:17},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-403-1},
ISSN = {1868-8969},
year = {2025},
volume = {357},
editor = {Dujmovi\'{c}, Vida and Montecchiani, Fabrizio},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GD.2025.25},
URN = {urn:nbn:de:0030-drops-250116},
doi = {10.4230/LIPIcs.GD.2025.25},
annote = {Keywords: generalized twisted drawings, simple drawings, rotation systems, recognition, combinatorial characterization, efficient algorithms}
}