FUTURES-AMR: Towards an Adaptive Mesh Refinement Framework for Geosimulations

Authors Ashwin Shashidharan, Ranga Raju Vatsavai, Derek B. Van Berkel, Ross K. Meentemeyer

Thumbnail PDF


  • Filesize: 9.17 MB
  • 15 pages

Document Identifiers

Author Details

Ashwin Shashidharan
  • Department of Computer Science, North Carolina State University, Raleigh, USA
Ranga Raju Vatsavai
  • Department of Computer Science, North Carolina State University, Raleigh, USA
Derek B. Van Berkel
  • Center for Geospatial Analytics, North Carolina State University, Raleigh, USA
Ross K. Meentemeyer
  • Center for Geospatial Analytics, North Carolina State University, Raleigh, USA

Cite AsGet BibTex

Ashwin Shashidharan, Ranga Raju Vatsavai, Derek B. Van Berkel, and Ross K. Meentemeyer. FUTURES-AMR: Towards an Adaptive Mesh Refinement Framework for Geosimulations. In 10th International Conference on Geographic Information Science (GIScience 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 114, pp. 16:1-16:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Adaptive Mesh Refinement (AMR) is a computational technique used to reduce the amount of computation and memory required in scientific simulations. Geosimulations are scientific simulations using geographic data, routinely used to predict outcomes of urbanization in urban studies. However, the lack of support for AMR techniques with geosimulations limits exploring prediction outcomes at multiple resolutions. In this paper, we propose an adaptive mesh refinement framework FUTURES-AMR, based on static user-defined policies to enable multi-resolution geosimulations. We develop a prototype for the cellular automaton based urban growth simulation FUTURES by exploiting static and dynamic mesh refinement techniques in conjunction with the Patch Growing Algorithm (PGA). While, the static refinement technique supports a statically defined fixed resolution mesh simulation at a location, the dynamic refinement technique supports dynamically refining the resolution based on simulation outcomes at runtime. Further, we develop two approaches - asynchronous AMR and synchronous AMR, suitable for parallel execution in a distributed computing environment with varying support for solution integration of the multi-resolution results. Finally, using the FUTURES-AMR framework with different policies in an urban study, we demonstrate reduced execution time, and low memory overhead for a multi-resolution simulation.

Subject Classification

ACM Subject Classification
  • Computing methodologies → Distributed simulation
  • Computing methodologies → Multiscale systems
  • Applied computing → Environmental sciences
  • Adaptive mesh refinement
  • Geosimulation
  • Distributed system
  • Multi-resolution
  • Urban geography


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads


  1. Satish Balay, Kris Buschelman, William D Gropp, Dinesh Kaushik, Matt Knepley, L Curfman McInnes, Barry F Smith, and Hong Zhang. PETSc, the portable, extensible toolkit for scientific computation, 1998. Google Scholar
  2. J Bell, A Almgren, V Beckner, M Day, M Lijewski, A Nonaka, and W Zhang. BoxLib user’s guide. github. com/BoxLib-Codes/BoxLib, 2012. Google Scholar
  3. Marsha J Berger and Phillip Colella. Local adaptive mesh refinement for shock hydrodynamics. Journal of computational Physics, 82(1):64-84, 1989. Google Scholar
  4. Marsha J Berger and Joseph Oliger. Adaptive mesh refinement for hyperbolic partial differential equations. Journal of computational Physics, 53(3):484-512, 1984. Google Scholar
  5. MJ Berger and R LeVeque. Adaptive mesh refinement for two-dimensional hyperbolic systems and the AMRCLAW software. SIAM J. Numer. Anal, 35:2298-2316, 1998. Google Scholar
  6. P Colella, DT Graves, TJ Ligocki, DF Martin, D Modiano, DB Serafini, and B Van Straalen. Chombo software package for AMR applications-design document, 2000. URL: http://seesar.lbl.gov/anag/chombo/ChomboDesign-3.1.pdf.
  7. Lori Freitag Diachin, Richard Hornung, Paul Plassmann, and Andy Wissink. Parallel adaptive mesh refinement. In Parallel processing for scientific computing, pages 143-162. SIAM, 2006. Google Scholar
  8. Anshu Dubey et al. A survey of high level frameworks in block-structured adaptive mesh refinement packages. Journal of Parallel and Distributed Computing, 74(12):3217-3227, 2014. URL: http://dx.doi.org/10.1016/j.jpdc.2014.07.001.
  9. Greg L Bryan et al. Enzo: An adaptive mesh refinement code for astrophysics. The Astrophysical Journal Supplement Series, 211(2):19, 2014. Google Scholar
  10. Joseph E. Flaherty et al. Adaptive local refinement with octree load balancing for the parallel solution of three-dimensional conservation laws. Journal of Parallel and Distributed Computing, 47(2):139-152, 1997. Google Scholar
  11. Orion S Lawlor et al. ParFUM: a parallel framework for unstructured meshes for scalable dynamic physics applications. Engineering with Computers, 22(3-4):215-235, 2006. Google Scholar
  12. Peter MacNeice et al. PARAMESH: A parallel adaptive mesh refinement community toolkit. Computer Physics Communications, 126(3):330-354, 2000. URL: http://dx.doi.org/10.1016/S0010-4655(99)00501-9.
  13. Ross K. Meentemeyer et al. FUTURES: Multilevel Simulations of Emerging Urban-Rural Landscape Structure Using a Stochastic Patch-Growing Algorithm. Annals of the Association of American Geographers, 103(4):785-807, 2013. Google Scholar
  14. Robert D Falgout and Ulrike Meier Yang. hypre: A library of high performance preconditioners. In International Conference on Computational Science, pages 632-641. Springer, 2002. Google Scholar
  15. Efi Fogel and Monique Teillaud. The computational geometry algorithms library CGAL. ACM Communications in Computer Algebra, 47(3/4):85-87, 2014. Google Scholar
  16. Daniel A Ibanez, E Seegyoung Seol, Cameron W Smith, and Mark S Shephard. PUMI: Parallel unstructured mesh infrastructure. ACM Transactions on Mathematical Software (TOMS), 42(3):17, 2016. Google Scholar
  17. Scott R. Kohn and Scott B. Baden. Parallel software abstractions for structured adaptive mesh methods. Journal of Parallel and Distributed Computing, 61(6):713-736, 2001. URL: http://dx.doi.org/10.1006/jpdc.2001.1700.
  18. John G Michalakes. RSL: A parallel runtime system library for regional atmospheric models with nesting. IMA Volumes in Mathematics and Its Applications, 117:59-74, 2000. Google Scholar
  19. M Miller. Silo - a mesh and field I/O library and scientific database, 2018. URL: https://wci.llnl.gov/simulation/computer-codes/silo.
  20. Manish Parashar and James C Browne. On partitioning dynamic adaptive grid hierarchies. In System Sciences, 1996., Proceedings of the Twenty-Ninth Hawaii International Conference on,, volume 1, pages 604-613. IEEE, 1996. Google Scholar
  21. Jarmo Rantakokko and Michael Thuné. Parallel structured adaptive mesh refinement. Parallel computing, pages 147-173, 2009. Google Scholar
  22. Ashwin Shashidharan, Ranga Raju Vatsavai, Abhinav Ashish, and Ross K. Meentemeyer. tFUTURES: Computational steering for geosimulations. In Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, SIGSPATIAL'17, pages 27:1-27:10, New York, NY, USA, 2017. ACM. URL: http://dx.doi.org/10.1145/3139958.3140049.
  23. John A Trangenstein. Adaptive mesh refinement for wave propagation in nonlinear solids. SIAM Journal on Scientific Computing, 16(4):819-839, 1995. Google Scholar
  24. Andrew M. Wissink, Richard D. Hornung, Scott R. Kohn, Steve S. Smith, and Noah Elliott. Large scale parallel structured AMR calculations using the SAMRAI framework. In Proceedings of the 2001 ACM/IEEE Conference on Supercomputing, SC '01, pages 6-6, New York, NY, USA, 2001. ACM. URL: http://dx.doi.org/10.1145/582034.582040.