Development of a Semantic Segmentation Approach to Old-Map Comparison (Short Paper)

Authors Yves Annanias , Daniel Wiegreffe , Andreas Niekler , Marta Kuźma , Francis Harvey

Thumbnail PDF


  • Filesize: 2.49 MB
  • 6 pages

Document Identifiers

Author Details

Yves Annanias
  • Image and Signal Processing Group, Leipzig University, Germany
Daniel Wiegreffe
  • Image and Signal Processing Group, Leipzig University, Germany
Andreas Niekler
  • Computational Humanities, Leipzig University, Germany
Marta Kuźma
  • Faculty of History, University of Warsaw, Poland
Francis Harvey
  • Leibniz Institute for Regional Geography, Leipzig, Germany
  • Faculty of History, University of Warsaw, Poland

Cite AsGet BibTex

Yves Annanias, Daniel Wiegreffe, Andreas Niekler, Marta Kuźma, and Francis Harvey. Development of a Semantic Segmentation Approach to Old-Map Comparison (Short Paper). In 12th International Conference on Geographic Information Science (GIScience 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 277, pp. 14:1-14:6, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


This paper describes an innovative computational approach for comparing old maps. Maps older than 20 years remain a vast treasure of geographic information in many parts of the world with potential applications in many environmental and social analyses, e.g., establishing road construction over the past 80 years or identifying settlement growth since the middle ages. Semantic segmentation has developed into a viable computational method for analysing old maps from previous centuries. It allows for the discrete identification of elements, e.g., lakes, forests, and roads, from cartographic sources and their computational modelling. Semantic segmentation uses convolutional neural networks to extract elements. With this technique, we create a computational approach to compare old maps systematically and efficiently.

Subject Classification

ACM Subject Classification
  • Human-centered computing → Interactive systems and tools
  • Information systems → Geographic information systems
  • Geographic/Geospatial Visualization
  • Visual Knowledge Discovery
  • Cartographic Analysis


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads


  1. Natalia Andrienko, Gennady Andrienko, and Peter Gatalsky. Exploratory spatio-temporal visualization: an analytical review. Journal of Visual Languages & Computing, 14(6):503-541, December 2003. URL:
  2. Yves Annanias, Dirk Zeckzer, Gerik Scheuermann, and Daniel Wiegreffe. An interactive decision support system for land reuse tasks. IEEE Computer Graphics and Applications, 42(6):72-83, 2022. URL:
  3. Nicolas Audebert, Bertrand Le Saux, and Sébastien Lefèvre. Semantic segmentation of earth observation data using multimodal and multi-scale deep networks. In Computer Vision-ACCV 2016: 13th Asian Conference on Computer Vision, Taipei, Taiwan, November 20-24, 2016, Revised Selected Papers, Part I 13, pages 180-196. Springer, 2017. Google Scholar
  4. Prafullata Auradkar, Tejas Prashanth, Suraj Aralihalli, Sreeniketh Pradeep Kumar, and Dinkar Sitaram. Performance tuning analysis of spatial operations on spatial hadoop cluster with ssd. Procedia Computer Science, 167:2253-2266, 2020. Google Scholar
  5. Nicholas R. Chrisman. Design of geographic information systems based on social and cultural goals. Photogrammetric Engineering and Remote Sensing, 53(10):1367-1370, 1987. Google Scholar
  6. Matthew Edney. Cartography. The ideal and its history. University of Chicago Press, Chicago, 2019. Google Scholar
  7. M. Gleicher. Considerations for Visualizing Comparison. IEEE Transactions on Visualization and Computer Graphics, 24(1):413-423, 2018. URL:
  8. Bernard Jenny, Helen Jenny, and Lorenz Hurni. Alte Karten als historische Quelle – Wie lässt sich die geometrische Genauigkeit des Karteninhalts abschätzen? In C. Koller and P. Jucker-Kupper, editors, Karten, Kartographie und Geschichte - Von der Visualisierung der Macht zur Macht der Visualisierung / Cartes, cartographie et Histoire - De la visualisation du pouvoir au pouvoir de la visualisation, pages 127-144. Chronos Verlag, Zürich, 2009. Google Scholar
  9. Anne Kelly. Knowles and Amy Hillier. Placing history : how maps, spatial data, and GIS are changing historical scholarship. ESRI Press, Redlands, Calif., 2008. Google Scholar
  10. J.B. Owens, May Yuan, M. Wachowicz, Vitit Kantabutra, E.A. Coppola, Daniel Ames, and Aldo Gangemi. Visualizing historical narratives: geographically-integrated history and dynamics gis., 2009. Google Scholar
  11. Tomasz Panecki. Digital methods in cartographic source editing. Digital scholarship in the humanities, 36(3):682-697, 2020. Google Scholar
  12. Rémi Guillaume Petitpierre, Frédéric Kaplan, and Isabella Di Lenardo. Generic semantic segmentation of historical maps. CEUR Workshop Proceedings, 2989(27):21. 228-248, 2021. Google Scholar
  13. Stanisław Pietiewicz. Analyse de l'exactitude de quelques cartes du xviie, xviiie et xixe siècle, couvrant les territoires de l'ancienne pologne. Przegłąd Geograficzny, Special Issue for the XIX-th International Geographical Congress, Stockholm 1960:21-27, 1960. Google Scholar
  14. Shashi Shekhar and Sanjay Chawla. Spatial Databases. A Tour. Pearson Education Inc., Upper Saddle River, NJ, 2003. Google Scholar
  15. Johannes H Uhl, Stefan Leyk, Yao-Yi Chiang, Weiwei Duan, and Craig A Knoblock. Map archive mining: visual-analytical approaches to explore large historical map collections. ISPRS international journal of geo-information, 7(4):148-167, 2018. Google Scholar
  16. Johannes H Uhl, Stefan Leyk, Yao-Yi Chiang, Weiwei Duan, and Craig A Knoblock. Automated extraction of human settlement patterns from historical topographic map series using weakly supervised convolutional neural networks. IEEE Access, 8:6978-6996, 2019. Google Scholar
  17. M Wachowicz and JB Owens. The role of knowledge spaces in geographically-oriented history. History and GIS, 2013. Google Scholar
  18. Kun Zheng, Ming Hui Xie, Jin Biao Zhang, Juan Xie, and Shu Hao Xia. A knowledge representation model based on the geographic spatiotemporal process. International Journal of Geographical Information Science, 36(4):674-691, 2022. Google Scholar