LIPIcs.GIScience.2023.44.pdf
- Filesize: 2.83 MB
- 7 pages
Traditional safety analysis methods based on historical crash data and simulation models have limitations in capturing real-world driving scenarios. In this experiment, panoramic videos recorded from a motorcyclist’s helmet in Bangkok, Thailand, were narrated using an image-to-text model and then put into a Large Language Model (LLM) to identify potential hazards and assess crash risks. The framework can assess static and moving objects with the potential for early warning and incident analysis. However, the limitations of the existing image-to-text model cause its inability to handle panoramic images effectively.
Feedback for Dagstuhl Publishing