Document

# An Efficient Algorithm for All-Pairs Bounded Edge Connectivity

## File

LIPIcs.ICALP.2023.11.pdf
• Filesize: 0.8 MB
• 20 pages

## Acknowledgements

The first author thanks Virginia Vassilevska Williams for insightful discussions on algorithms for computing matrix rank.

## Cite As

Shyan Akmal and Ce Jin. An Efficient Algorithm for All-Pairs Bounded Edge Connectivity. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 11:1-11:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)
https://doi.org/10.4230/LIPIcs.ICALP.2023.11

## Abstract

Our work concerns algorithms for a variant of Maximum Flow in unweighted graphs. In the All-Pairs Connectivity (APC) problem, we are given a graph G on n vertices and m edges, and are tasked with computing the maximum number of edge-disjoint paths from s to t (equivalently, the size of a minimum (s,t)-cut) in G, for all pairs of vertices (s,t). Over undirected graphs, it is known that APC can be solved in essentially optimal n^{2+o(1)} time. In contrast, the true time complexity of APC over directed graphs remains open: this problem can be solved in Õ(m^ω) time, where ω ∈ [2, 2.373) is the exponent of matrix multiplication, but no matching conditional lower bound is known. Following [Abboud et al., ICALP 2019], we study a bounded version of APC called the k-Bounded All Pairs Connectivity (k-APC) problem. In this variant of APC, we are given an integer k in addition to the graph G, and are now tasked with reporting the size of a minimum (s,t)-cut only for pairs (s,t) of vertices with min-cut value less than k (if the minimum (s,t)-cut has size at least k, we can just report it is "large" instead of computing the exact value). Our main result is an Õ((kn)^ω) time algorithm solving k-APC in directed graphs. This is the first algorithm which solves k-APC faster than simply solving the more general APC problem exactly, for all k ≥ 3. This runtime is Õ(n^ω) for all k ≤ poly(log n), which essentially matches the optimal runtime for the k = 1 case of k-APC, under popular conjectures from fine-grained complexity. Previously, this runtime was only achieved for general directed graphs when k ≤ 2 [Georgiadis et al., ICALP 2017]. Our result employs the same algebraic framework used in previous work, introduced by [Cheung, Lau, and Leung, FOCS 2011]. A direct implementation of this framework involves inverting a large random matrix. Our new algorithm is based off the insight that for solving k-APC, it suffices to invert a low-rank random matrix instead of a generic random matrix. We also obtain a new algorithm for a variant of k-APC, the k-Bounded All-Pairs Vertex Connectivity (k-APVC) problem, where for every pair of vertices (s,t), we are now tasked with reporting the maximum number of internally vertex-disjoint (rather than edge-disjoint) paths from s to t if this number is less than k, and otherwise reporting that this number is at least k. Our second result is an Õ(k²n^ω) time algorithm solving k-APVC in directed graphs. Previous work showed how to solve an easier version of the k-APVC problem (where answers only need to be returned for pairs of vertices (s,t) which are not edges in the graph) in Õ((kn)^ω) time [Abboud et al, ICALP 2019]. In comparison, our algorithm solves the full k-APVC problem, and is faster if ω > 2.

## Subject Classification

##### ACM Subject Classification
• Mathematics of computing → Graph algorithms
• maximum flow
• all-pairs
• connectivity
• matrix rank

## Metrics

• Access Statistics
• Total Accesses (updated on a weekly basis)
0
PDF Downloads

## References

1. Amir Abboud, Loukas Georgiadis, Giuseppe F. Italiano, Robert Krauthgamer, Nikos Parotsidis, Ohad Trabelsi, Przemysław Uznański, and Daniel Wolleb-Graf. Faster algorithms for all-pairs bounded min-cuts. In 46th International Colloquium on Automata, Languages, and Programming, ICALP 2019, July 9-12, 2019, Patras, Greece, volume 132 of LIPIcs, pages 7:1-7:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. URL: https://doi.org/10.4230/LIPIcs.ICALP.2019.7.
2. Amir Abboud, Robert Krauthgamer, and Ohad Trabelsi. APMF less APSP? Gomory-Hu tree for unweighted graphs in almost-quadratic time. In 62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages 1135-1146. IEEE, 2021. URL: https://doi.org/10.1109/FOCS52979.2021.00112.
3. Shyan Akmal and Ce Jin. An efficient algorithm for all-pairs bounded edge connectivity, 2023. URL: https://arxiv.org/abs/2305.02132.
4. Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster matrix multiplication. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, January 10-13, 2021, pages 522-539. SIAM, 2021. URL: https://doi.org/10.1137/1.9781611976465.32.
5. Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst Gutenberg, and Sushant Sachdeva. Maximum flow and minimum-cost flow in almost-linear time. In 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS), pages 612-623, 2022. URL: https://doi.org/10.1109/FOCS54457.2022.00064.
6. Ho Yee Cheung, Tsz Chiu Kwok, and Lap Chi Lau. Fast matrix rank algorithms and applications. Journal of the ACM, 60(5):1-25, October 2013. URL: https://doi.org/10.1145/2528404.
7. Ho Yee Cheung, Lap Chi Lau, and Kai Man Leung. Graph connectivities, network coding, and expander graphs. SIAM Journal on Computing, 42(3):733-751, January 2013. URL: https://doi.org/10.1137/110844970.
8. M. J. Fischer and A. R. Meyer. Boolean matrix multiplication and transitive closure. In 12th Annual Symposium on Switching and Automata Theory (SWAT 1971). IEEE, October 1971. URL: https://doi.org/10.1109/swat.1971.4.
9. François Le Gall and Florent Urrutia. Improved rectangular matrix multiplication using powers of the Coppersmith-Winograd tensor. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA '18, pages 1029-1046, USA, 2018. Society for Industrial and Applied Mathematics.
10. Loukas Georgiadis, Daniel Graf, Giuseppe F. Italiano, Nikos Parotsidis, and Przemysław Uznański. All-Pairs 2-Reachability in O(n^ω log n) Time. In 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017), volume 80 of Leibniz International Proceedings in Informatics (LIPIcs), pages 74:1-74:14, Dagstuhl, Germany, 2017. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. URL: https://doi.org/10.4230/LIPIcs.ICALP.2017.74.
11. Zhiyi Huang, Yaowei Long, Thatchaphol Saranurak, and Benyu Wang. Tight conditional lower bounds for vertex connectivity problems, 2022. URL: https://doi.org/10.48550/arXiv.2212.00359.
12. Robert Krauthgamer and Ohad Trabelsi. Conditional lower bounds for all-pairs max-flow. ACM Trans. Algorithms, 14(4), August 2018. URL: https://doi.org/10.1145/3212510.
13. Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University Press, August 1995. URL: https://doi.org/10.1017/cbo9780511814075.
14. Ohad Trabelsi. (Almost) ruling out SETH lower bounds for all-pairs max-flow, 2023. URL: https://doi.org/10.48550/arXiv.2304.04667.
15. Xiaowei Wu and Chenzi Zhang. Efficient algorithm for computing all low s-t edge connectivities in directed graphs. In Mathematical Foundations of Computer Science 2015, pages 577-588. Springer Berlin Heidelberg, 2015. URL: https://doi.org/10.1007/978-3-662-48054-0_48.
X

Feedback for Dagstuhl Publishing

### Thanks for your feedback!

Feedback submitted

### Could not send message

Please try again later or send an E-mail