Local Computation Algorithms for Hypergraph Coloring - Following Beck’s Approach

Authors Andrzej Dorobisz , Jakub Kozik

Thumbnail PDF


  • Filesize: 0.83 MB
  • 20 pages

Document Identifiers

Author Details

Andrzej Dorobisz
  • Theoretical Computer Science Department, Faculty of Mathematics and Computer Science, Jagiellonian University, Kraków, Poland
Jakub Kozik
  • Theoretical Computer Science Department, Faculty of Mathematics and Computer Science, Jagiellonian University, Kraków, Poland

Cite AsGet BibTex

Andrzej Dorobisz and Jakub Kozik. Local Computation Algorithms for Hypergraph Coloring - Following Beck’s Approach. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 48:1-48:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


We investigate local computation algorithms (LCA) for two-coloring of k-uniform hypergraphs. We focus on hypergraph instances that satisfy strengthened assumption of the Lovász Local Lemma of the form 2^(1-αk) (Δ+1) e < 1, where Δ is the bound on the maximum edge degree. The main question which arises here is for how large α there exists an LCA that is able to properly color such hypergraphs in polylogarithmic time per query. We describe briefly how upgrading the classical sequential procedure of Beck from 1991 with Moser and Tardos' Resample yields polylogarithmic LCA that works for α up to 1/4. Then, we present an improved procedure that solves wider range of instances by allowing α up to 1/3.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Hypergraphs
  • Mathematics of computing → Probabilistic algorithms
  • Theory of computation → Streaming, sublinear and near linear time algorithms
  • Local Computation Algorithms
  • Hypergraph Coloring
  • Property B


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads


  1. Dimitris Achlioptas, Themis Gouleakis, and Fotis Iliopoulos. Simple local computation algorithms for the general Lovász Local Lemma. In Christian Scheideler and Michael Spear, editors, SPAA '20: 32nd ACM Symposium on Parallelism in Algorithms and Architectures, Virtual Event, USA, July 15-17, 2020, pages 1-10. ACM, 2020. URL: https://doi.org/10.1145/3350755.3400250.
  2. Noga Alon. A parallel algorithmic version of the local lemma. Random Structures Algorithms, 2(4):367-378, 1991. URL: https://doi.org/10.1002/rsa.3240020403.
  3. Noga Alon, Ronitt Rubinfeld, Shai Vardi, and Ning Xie. Space-efficient local computation algorithms. In Yuval Rabani, editor, Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012, pages 1132-1139. SIAM, 2012. URL: https://doi.org/10.1137/1.9781611973099.89.
  4. Noga Alon and Joel H. Spencer. The Probabilistic Method, Second Edition. John Wiley, 2000. URL: https://doi.org/10.1002/0471722154.
  5. József Beck. An algorithmic approach to the Lovász local lemma. I. Random Structures Algorithms, 2(4):343-365, 1991. URL: https://doi.org/10.1002/rsa.3240020402.
  6. Yi-Jun Chang and Seth Pettie. A time hierarchy theorem for the LOCAL model. SIAM J. Comput., 48(1):33-69, 2019. URL: https://doi.org/10.1137/17M1157957.
  7. Artur Czumaj and Christian Scheideler. Coloring non-uniform hypergraphs: a new algorithmic approach to the general Lovász local lemma. In David B. Shmoys, editor, Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms, January 9-11, 2000, San Francisco, CA, USA, pages 30-39. ACM/SIAM, 2000. URL: https://dl.acm.org/doi/10.5555/338219.338229.
  8. Andrzej Dorobisz and Jakub Kozik. Local computation algorithms for hypergraph coloring - following Beck’s approach (full version), 2023. URL: https://arxiv.org/abs/2305.02831.
  9. Paul Erdős and László Lovász. Problems and results on 3-chromatic hypergraphs and some related questions. In Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdős on his 60th birthday), Vol. II, volume 10 of Colloquia Mathematica Societatis János Bolyai, pages 609-627. North-Holland, Amsterdam, 1975. Google Scholar
  10. Guy Even, Moti Medina, and Dana Ron. Best of two local models: Centralized local and distributed local algorithms. Inf. Comput., 262:69-89, 2018. URL: https://doi.org/10.1016/j.ic.2018.07.001.
  11. András Faragó. A meeting point of probability, graphs, and algorithms: The Lovász Local Lemma and related results - A survey. Algorithms, 14(12):355, 2021. URL: https://doi.org/10.3390/a14120355.
  12. Manuela Fischer and Mohsen Ghaffari. Sublogarithmic distributed algorithms for Lovász Local Lemma, and the complexity hierarchy. In Andréa W. Richa, editor, 31st International Symposium on Distributed Computing, DISC 2017, October 16-20, 2017, Vienna, Austria, volume 91 of LIPIcs, pages 18:1-18:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. URL: https://doi.org/10.4230/LIPIcs.DISC.2017.18.
  13. Mohsen Ghaffari, David G. Harris, and Fabian Kuhn. On derandomizing local distributed algorithms. In Mikkel Thorup, editor, 59th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018, Paris, France, October 7-9, 2018, pages 662-673. IEEE Computer Society, 2018. URL: https://doi.org/10.1109/FOCS.2018.00069.
  14. Nathan Linial. Distributive graph algorithms global solutions from local data. In 28th Annual Symposium on Foundations of Computer Science (sfcs 1987), pages 331-335, 1987. URL: https://doi.org/10.1109/SFCS.1987.20.
  15. László Lovász. Coverings and coloring of hypergraphs. In Proceedings of the Fourth Southeastern Conference on Combinatorics, Graph Theory, and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1973), pages 3-12, 1973. Google Scholar
  16. Yishay Mansour, Aviad Rubinstein, Shai Vardi, and Ning Xie. Converting online algorithms to local computation algorithms. In Artur Czumaj, Kurt Mehlhorn, Andrew M. Pitts, and Roger Wattenhofer, editors, Automata, Languages, and Programming - 39th International Colloquium, ICALP 2012, Warwick, UK, July 9-13, 2012, Proceedings, Part I, volume 7391 of Lecture Notes in Computer Science, pages 653-664. Springer, 2012. URL: https://doi.org/10.1007/978-3-642-31594-7_55.
  17. Michael Molloy and Bruce Reed. Graph colouring and the probabilistic method. Springer, 2002. URL: https://doi.org/10.1007/978-3-642-04016-0.
  18. Michael Molloy and Bruce A. Reed. Further algorithmic aspects of the Local Lemma. In Jeffrey Scott Vitter, editor, Proceedings of the Thirtieth Annual ACM Symposium on the Theory of Computing, Dallas, Texas, USA, May 23-26, 1998, pages 524-529. ACM, 1998. URL: https://doi.org/10.1145/276698.276866.
  19. Robin A. Moser. Derandomizing the Lovasz Local Lemma more effectively. CoRR, abs/0807.2120, 2008. URL: https://arxiv.org/abs/0807.2120.
  20. Robin A. Moser and Gábor Tardos. A constructive proof of the general lovász local lemma. J. ACM, 57(2):11:1-11:15, 2010. URL: https://doi.org/10.1145/1667053.1667060.
  21. Ronitt Rubinfeld, Gil Tamir, Shai Vardi, and Ning Xie. Fast local computation algorithms. In Bernard Chazelle, editor, Innovations in Computer Science - ICS 2011, Tsinghua University, Beijing, China, January 7-9, 2011. Proceedings, pages 223-238. Tsinghua University Press, 2011. Google Scholar
  22. Aravind Srinivasan. Improved algorithmic versions of the Lovász Local Lemma. In Shang-Hua Teng, editor, Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2008, San Francisco, California, USA, January 20-22, 2008, pages 611-620. SIAM, 2008. URL: https://dl.acm.org/doi/10.5555/1347082.1347150.