LIPIcs.ICALP.2024.110.pdf
- Filesize: 0.79 MB
- 17 pages
We develop new characterizations of Impagliazzo’s worlds Algorithmica, Heuristica and Pessiland by the intractability of conditional Kolmogorov complexity 𝖪 and conditional probabilistic time-bounded Kolmogorov complexity pK^t. In our first set of results, we show that NP ⊆ BPP iff pK^t(x ∣ y) can be computed efficiently in the worst case when t is sublinear in |x| + |y|; DistNP ⊆ HeurBPP iff pK^t(x ∣ y) can be computed efficiently over all polynomial-time samplable distributions when t is sublinear in |x| + |y|; and infinitely-often one-way functions fail to exist iff pK^t(x ∣ y) can be computed efficiently over all polynomial-time samplable distributions for t a sufficiently large polynomial in |x| + |y|. These results characterize Impagliazzo’s worlds Algorithmica, Heuristica and Pessiland purely in terms of the tractability of conditional pK^t. Notably, the results imply that Pessiland fails to exist iff the average-case intractability of conditional pK^t is insensitive to the difference between sublinear and polynomially bounded t. As a corollary, while we prove conditional pK^t to be NP-hard for sublinear t, showing NP-hardness for large enough polynomially bounded t would eliminate Pessiland as a possible world of average-case complexity. In our second set of results, we characterize Impagliazzo’s worlds Algorithmica, Heuristica and Pessiland by the distributional tractability of a natural problem, i.e., approximating the conditional Kolmogorov complexity, that is provably intractable in the worst case. We show that NP ⊆ BPP iff conditional Kolmogorov complexity can be approximated in the semi-worst case; and DistNP ⊆ HeurBPP iff conditional Kolmogorov complexity can be approximated on average over all independent polynomial-time samplable distributions. It follows from a result by Ilango, Ren, and Santhanam (STOC 2022) that infinitely-often one-way functions fail to exist iff conditional Kolmogorov complexity can be approximated on average over all polynomial-time samplable distributions. Together, these results yield the claimed characterizations. Our techniques, combined with previous work, also yield a characterization of auxiliary-input one-way functions and equivalences between different average-case tractability assumptions for conditional Kolmogorov complexity and its variants. Our results suggest that novel average-case tractability assumptions such as tractability in the semi-worst case and over independent polynomial-time samplable distributions might be worthy of further study.
Feedback for Dagstuhl Publishing