On Classes of Bounded Tree Rank, Their Interpretations, and Efficient Sparsification

Authors Jakub Gajarský , Rose McCarty



PDF
Thumbnail PDF

File

LIPIcs.ICALP.2024.137.pdf
  • Filesize: 0.73 MB
  • 20 pages

Document Identifiers

Author Details

Jakub Gajarský
  • University of Warsaw, Poland
Rose McCarty
  • School of Mathematics and School of Computer Science, Georgia Institute of Technology, Altanta, GA, USA

Cite AsGet BibTex

Jakub Gajarský and Rose McCarty. On Classes of Bounded Tree Rank, Their Interpretations, and Efficient Sparsification. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 137:1-137:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.ICALP.2024.137

Abstract

Graph classes of bounded tree rank were introduced recently in the context of the model checking problem for first-order logic of graphs. These graph classes are a common generalization of graph classes of bounded degree and bounded treedepth, and they are a special case of graph classes of bounded expansion. We introduce a notion of decomposition for these classes and show that these decompositions can be efficiently computed. Also, a natural extension of our decomposition leads to a new characterization and decomposition for graph classes of bounded expansion (and an efficient algorithm computing this decomposition). We then focus on interpretations of graph classes of bounded tree rank. We give a characterization of graph classes interpretable in graph classes of tree rank 2. Importantly, our characterization leads to an efficient sparsification procedure: For any graph class 𝒞 interpretable in a graph class of tree rank at most 2, there is a polynomial time algorithm that to any G ∈ 𝒞 computes a (sparse) graph H from a fixed graph class of tree rank at most 2 such that G = I(H) for a fixed interpretation I. To the best of our knowledge, this is the first efficient "interpretation reversal" result that generalizes the result of Gajarský et al. [LICS 2016], who showed an analogous result for graph classes interpretable in classes of graphs of bounded degree.

Subject Classification

ACM Subject Classification
  • Theory of computation → Finite Model Theory
  • Theory of computation → Fixed parameter tractability
  • Mathematics of computing → Graph theory
Keywords
  • First-order model checking
  • structural graph theory
  • structural sparsity

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Édouard Bonnet, Jan Dreier, Jakub Gajarský, Stephan Kreutzer, Nikolas Mählmann, Pierre Simon, and Szymon Toruńczyk. Model checking on interpretations of classes of bounded local cliquewidth. In Proceedings of the 37th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS '22, New York, NY, USA, 2022. Association for Computing Machinery. URL: https://doi.org/10.1145/3531130.3533367.
  2. Édouard Bonnet, Ugo Giocanti, Patrice Ossona de Mendez, Pierre Simon, Stéphan Thomassé, and Szymon Toruńczyk. Twin-width iv: Ordered graphs and matrices. In Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2022, pages 924-937, New York, NY, USA, 2022. Association for Computing Machinery. URL: https://doi.org/10.1145/3519935.3520037.
  3. Samuel Braunfeld, Jaroslav Nesetril, Patrice Ossona de Mendez, and Sebastian Siebertz. Decomposition horizons: from graph sparsity to model-theoretic dividing lines. CoRR, abs/2209.11229, 2022. URL: https://doi.org/10.48550/arXiv.2209.11229.
  4. Jan Dreier, Ioannis Eleftheriadis, Nikolas Mählmann, Rose McCarty, Michał Pilipczuk, and Szymon Toruńczyk. First-order model checking on monadically stable graph classes, 2023. URL: https://arxiv.org/abs/2311.18740.
  5. Jan Dreier, Nikolas Mählmann, and Sebastian Siebertz. First-order model checking on structurally sparse graph classes. In Proceedings of the 55th Annual ACM Symposium on Theory of Computing, STOC 2023, pages 567-580, New York, NY, USA, 2023. Association for Computing Machinery. URL: https://doi.org/10.1145/3564246.3585186.
  6. Jan Dreier, Nikolas Mählmann, Sebastian Siebertz, and Szymon Toruńczyk. Indiscernibles and Flatness in Monadically Stable and Monadically NIP Classes. In Kousha Etessami, Uriel Feige, and Gabriele Puppis, editors, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023), volume 261 of Leibniz International Proceedings in Informatics (LIPIcs), pages 125:1-125:18, Dagstuhl, Germany, 2023. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.ICALP.2023.125.
  7. Zdeněk Dvořák. Constant-factor approximation of the domination number in sparse graphs. European Journal of Combinatorics, 34(5):833-840, 2013. Google Scholar
  8. Kord Eickmeyer and Ken-ichi Kawarabayashi. FO model checking on map graphs. In Ralf Klasing and Marc Zeitoun, editors, Fundamentals of Computation Theory - 21st International Symposium, FCT 2017, Bordeaux, France, September 11-13, 2017, Proceedings, volume 10472 of Lecture Notes in Computer Science, pages 204-216. Springer, 2017. URL: https://doi.org/10.1007/978-3-662-55751-8_17.
  9. Markus Frick and Martin Grohe. The complexity of first-order and monadic second-order logic revisited. Annals of Pure and Applied Logic, 130(1-3):3-31, 2004. Google Scholar
  10. Haim Gaifman. On local and non-local properties. Studies in Logic and the Foundations of Mathematics, 107:105-135, 1982. Google Scholar
  11. Jakub Gajarský and Petr Hlinený. Kernelizing MSO properties of trees of fixed height, and some consequences. Log. Methods Comput. Sci., 11(1), 2015. URL: https://doi.org/10.2168/LMCS-11(1:19)2015.
  12. Jakub Gajarský, Petr Hlinený, Jan Obdrzálek, Daniel Lokshtanov, and M. S. Ramanujan. A new perspective on FO model checking of dense graph classes. ACM Trans. Comput. Log., 21(4):28:1-28:23, 2020. URL: https://doi.org/10.1145/3383206.
  13. Jakub Gajarský, Michał Pilipczuk, Marek Sokołowski, Giannos Stamoulis, and Szymon Toruńczyk. Elementary first-order model checking for sparse graphs, 2024. URL: https://arxiv.org/abs/2401.16230.
  14. Martin Grohe, Stephan Kreutzer, and Sebastian Siebertz. Deciding first-order properties of nowhere dense graphs. J. ACM, 64(3):17:1-17:32, 2017. URL: https://doi.org/10.1145/3051095.
  15. Michael Lampis. First Order Logic on Pathwidth Revisited Again. In Kousha Etessami, Uriel Feige, and Gabriele Puppis, editors, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023), volume 261 of Leibniz International Proceedings in Informatics (LIPIcs), pages 132:1-132:17, Dagstuhl, Germany, 2023. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.ICALP.2023.132.
  16. L. Lovász, V. Neumann-Lara, and M. Plummer. Mengerian theorems for paths of bounded length. Periodica Mathematica Hungarica, 9(4):269-276, 1978. Google Scholar
  17. Jaroslav Nešetřil and Patrice Ossona De Mendez. Sparsity: graphs, structures, and algorithms, volume 28. Springer Science & Business Media, 2012. Google Scholar
  18. Jaroslav Nesetril, Patrice Ossona de Mendez, Michal Pilipczuk, Roman Rabinovich, and Sebastian Siebertz. Rankwidth meets stability. In Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, January 10-13, 2021, pages 2014-2033. SIAM, 2021. URL: https://doi.org/10.1137/1.9781611976465.120.
  19. Jaroslav Nešetřil, Roman Rabinovich, Patrice Ossona de Mendez, and Sebastian Siebertz. Linear rankwidth meets stability. In 31st ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, pages 1180-1199. SIAM, 2020. URL: https://doi.org/10.1137/1.9781611975994.72.
  20. Saharon Shelah. Stability, the f.c.p., and superstability; model theoretic properties of formulas in first order theory. Annals of Mathematical Logic, 3(3):271-362, 1971. Google Scholar
  21. Saharon Shelah. A combinatorial problem; stability and order for models and theories in infinitary languages. Pacific Journal of Mathematics, 41(1):247-261, 1972. Google Scholar
  22. Szymon Toruńczyk. Flip-width: Cops and robber on dense graphs. FOCS 2023, accepted, arXiv abs/2302.00352, 2023. Google Scholar
  23. Xuding Zhu. Colouring graphs with bounded generalized colouring number. Discrete Mathematics, 309(18):5562-5568, 2009. Google Scholar