We study two clustering problems, Starforest Editing, the problem of adding and deleting edges to obtain a disjoint union of stars, and the generalization Bicluster Editing. We show that, in addition to being NP-hard, none of the problems can be solved in subexponential time unless the exponential time hypothesis fails. Misra, Panolan, and Saurabh (MFCS 2013) argue that introducing a bound on the number of connected components in the solution should not make the problem easier: In particular, they argue that the subexponential time algorithm for editing to a fixed number of clusters (p-Cluster Editing) by Fomin et al. (J. Comput. Syst. Sci., 80(7) 2014) is an exception rather than the rule. Here, p is a secondary parameter, bounding the number of components in the solution. However, upon bounding the number of stars or bicliques in the solution, we obtain algorithms which run in time O(2^{3*sqrt(pk)} + n + m) for p-Starforest Editing and O(2^{O(p * sqrt(k) * log(pk))} + n + m) for p-Bicluster Editing. We obtain a similar result for the more general case of t-Partite p-Cluster Editing. This is subexponential in k for a fixed number of clusters, since p is then considered a constant. Our results even out the number of multivariate subexponential time algorithms and give reasons to believe that this area warrants further study.
@InProceedings{drange_et_al:LIPIcs.IPEC.2015.402, author = {Drange, P\r{a}l Gr{\o}n\r{a}s and Reidl, Felix and S\'{a}nchez Villaamil, Fernando and Sikdar, Somnath}, title = {{Fast Biclustering by Dual Parameterization}}, booktitle = {10th International Symposium on Parameterized and Exact Computation (IPEC 2015)}, pages = {402--413}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-939897-92-7}, ISSN = {1868-8969}, year = {2015}, volume = {43}, editor = {Husfeldt, Thore and Kanj, Iyad}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2015.402}, URN = {urn:nbn:de:0030-drops-56004}, doi = {10.4230/LIPIcs.IPEC.2015.402}, annote = {Keywords: graph editing, subexponential algorithms, parameterized complexity} }
Feedback for Dagstuhl Publishing