Document

# Subset Feedback Vertex Set on Graphs of Bounded Independent Set Size

## File

LIPIcs.IPEC.2018.20.pdf
• Filesize: 478 kB
• 14 pages

## Cite As

Charis Papadopoulos and Spyridon Tzimas. Subset Feedback Vertex Set on Graphs of Bounded Independent Set Size. In 13th International Symposium on Parameterized and Exact Computation (IPEC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 115, pp. 20:1-20:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)
https://doi.org/10.4230/LIPIcs.IPEC.2018.20

## Abstract

The (Weighted) Subset Feedback Vertex Set problem is a generalization of the classical Feedback Vertex Set problem and asks for a vertex set of minimum (weight) size that intersects all cycles containing a vertex of a predescribed set of vertices. Although the two problems exhibit different computational complexity on split graphs, no similar characterization is known on other classes of graphs. Towards the understanding of the complexity difference between the two problems, it is natural to study the importance of a structural graph parameter. Here we consider graphs of bounded independent set number for which it is known that Weighted Feedback Vertex Set can be solved in polynomial time. We provide a dichotomy result with respect to the size of a maximum independent set. In particular we show that Weighted Subset Feedback Vertex Set can be solved in polynomial time for graphs of independent set number at most three, whereas we prove that the problem remains NP-hard for graphs of independent set number four. Moreover, we show that the (unweighted) Subset Feedback Vertex Set problem can be solved in polynomial time on graphs of bounded independent set number by giving an algorithm with running time n^{O(d)}, where d is the size of a maximum independent set of the input graph. To complement our results, we demonstrate how our ideas can be extended to other terminal set problems on graphs of bounded independent set size. Based on our findings for Subset Feedback Vertex Set, we settle the complexity of Node Multiway Cut, a terminal set problem that asks for a vertex set of minimum size that intersects all paths connecting any two terminals, as well as its variants where nodes are weighted and/or the terminals are deletable, for every value of the given independent set number.

## Subject Classification

##### ACM Subject Classification
• Mathematics of computing → Graph algorithms
##### Keywords
• Subset Feedback Vertex Set
• Node Multiway Cut
• Terminal Set problem
• polynomial-time algorithm
• NP-completeness
• W[1]-hardness
• graphs of bounded independent set size

## Metrics

• Access Statistics
• Total Accesses (updated on a weekly basis)
0

## References

1. A. Brandstädt, V. B. Le, and J. Spinrad. Graph Classes: A Survey. Society for Industrial and Applied Mathematics, 1999.
2. B.-M. Bui-Xuan, O. Suchý, J. A. Telle, and M. Vatshelle. Feedback vertex set on graphs of low clique-width. Eur. Journal of Combinatorics, 34(3):666-679, 2013.
3. G. Calinescu. Multiway Cut. In Encyclopedia of Algorithms. Springer, 2008.
4. J. Chen, Y. Liu, and S. Lu. An improved parameterized algorithm for the minimum node multiway cut problem. Algorithmica, 55:1-13, 2009.
5. R. H. Chitnis, F. V. Fomin, D. Lokshtanov, P. Misra, M. S. Ramanujan, and S. Saurabh. Faster exact algorithms for some terminal set problems. In Proceedings of IPEC 2013, pages 150-162, 2013.
6. R. H. Chitnis, F. V. Fomin, D. Lokshtanov, P. Misra, M. S. Ramanujan, and S. Saurabh. Faster exact algorithms for some terminal set problems. Journal of Computer and System Sciences, 88:195-207, 2017.
7. D. G. Corneil and J. Fonlupt. The complexity of generalized clique covering. Discrete Applied Mathematics, 22(2):109-118, 1988.
8. M. Cygan, J. Nederlof, M. Pilipczuk, M. Pilipczuk, J. M. M. van Rooij, and J. O. Wojtaszczyk. Solving connectivity problems parameterized by treewidth in single exponential time. In Proceedings of FOCS 2011, pages 150-159, 2011.
9. M. Cygan, M. Pilipczuk, M. Pilipczuk, and J. O. Wojtaszczyk. On multiway cut parameterized above lower bounds. ACM Trans. Comput. Theory, 5(1):3:1-3:11, 2013.
10. M. Cygan, M. Pilipczuk, M. Pilipczuk, and J. O. Wojtaszczyk. Subset feedback vertex set is fixed-parameter tractable. SIAM J. Discrete Math., 27(1):290-309, 2013.
11. R. Diestel. Graph Theory, 4th Edition, volume 173 of Graduate Texts in Mathematics. Springer, 2012.
12. R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer, 2013.
13. G. Even, J. Naor, and L. Zosin. An 8-approximation algorithm for the subset feedback vertex set problem. SIAM J. Comput., 30(4):1231-1252, 2000.
14. M. R. Fellows, D. Hermelin, F. A. Rosamond, and S. Vialette. On the parameterized complexity of multiple-interval graph problems. Theor. Comput. Sci., 410(1):53-61, 2009.
15. F. V. Fomin, S. Gaspers, D. Lokshtanov, and S. Saurabh. Exact algorithms via monotone local search. In Proceedings of STOC 2016, pages 764-775, 2016.
16. F. V. Fomin, P. Heggernes, D. Kratsch, C. Papadopoulos, and Y. Villanger. Enumerating minimal subset feedback vertex sets. Algorithmica, 69(1):216-231, 2014.
17. M. R. Garey and D. S. Johnson. Computers and Intractability. W. H. Freeman and Co., 1978.
18. N. Garg, V. V. Vazirani, and M. Yannakakis. Multiway cuts in node weighted graphs. J. Algorithms, 50(1):49-61, 2004.
19. P. A. Golovach, P. Heggernes, D. Kratsch, and R. Saei. Subset feedback vertex sets in chordal graphs. J. Discrete Algorithms, 26:7-15, 2014.
20. M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Annals of Discrete Mathematics 57, Elsevier, 2004.
21. E. C. Hols and S. Kratsch. A randomized polynomial kernel for subset feedback vertex set. Theory Comput. Syst., 62:54-65, 2018.
22. L. Jaffke, O. Kwon, and J. A. Telle. A note on the complexity of feedback vertex set parameterized by mim-width. CoRR, abs/1711.05157, 2017.
23. L. Jaffke, O. Kwon, and J. A. Telle. A unified polynomial-time algorithm for feedback vertex set on graphs of bounded mim-width. In Proceedings of STACS 2018, pages 42:1-42:14, 2018.
24. B. Jansen, V. Raman, and M. Vatshelle. Parameter ecology for feedback vertex set. Tsinghua Sci. and Technol., 19(4):387-409, 2014.
25. K. Kawarabayashi and Y. Kobayashi. Fixed-parameter tractability for the subset feedback set problem and the S-cycle packing problem. J. Comb. Theory, Ser. B, 102(4):1020-1034, 2012.
26. D. Kratsch, H. Müller, and I. Todinca. Feedback vertex set on AT-free graphs. Discrete Applied Mathematics, 156(10):1936-1947, 2008.
27. S. Kratsch and M. Wahlstrom. Representative sets and irrelevant vertices: new tools for kernelization. In Proceedings of FOCS 2012, pages 450-459, 2012.
28. Y. D. Liang and M.-S. Chang. Minimum feedback vertex sets in cocomparability graphs and convex bipartite graphs. Acta Informatica, 34(5):337-346, 1997.
29. D. Marx. Parameterized graph separation problems. Theor. Comput. Sci., 351:399-406, 2006.
30. J. B. Orlin. Max flows in O(nm) time, or better. In Proceedings of STOC 2013, pages 765-774, 2013.
31. C. Papadopoulos and S. Tzimas. Polynomial-time algorithms for the subset feedback vertex set problem on interval graphs and permutation graphs. In Proceedings of FCT 2017, pages 381-394, 2017.
32. C. Papadopoulos and S. Tzimas. Subset feedback vertex set on graphs of bounded independent set size. CoRR, abs/1805.07141, 2018. URL: http://arxiv.org/abs/1805.07141.
33. K. Pietrzak. On the parameterized complexity of the fixed alphabet shortest common supersequence and longest common subsequence problems. J. Comput. Syst. Sci., 67(4):757-771, 2003.
34. J. P. Spinrad. Efficient Graph Representations. American Mathematical Society, Fields Institute Monograph Series 19, 2003.
35. M. Vatshelle. New Width Parameters of Graphs. PhD thesis, University of Bergen, Norway, 2012.
36. M. Yannakakis. Node-deletion problems on bipartite graphs. SIAM J. Comput., 10(2):310-327, 1981.