Let C and D be hereditary graph classes. Consider the following problem: given a graph G in D, find a largest, in terms of the number of vertices, induced subgraph of G that belongs to C. We prove that it can be solved in 2^{o(n)} time, where n is the number of vertices of G, if the following conditions are satisfied: - the graphs in C are sparse, i.e., they have linearly many edges in terms of the number of vertices; - the graphs in D admit balanced separators of size governed by their density, e.g., O(Delta) or O(sqrt{m}), where Delta and m denote the maximum degree and the number of edges, respectively; and - the considered problem admits a single-exponential fixed-parameter algorithm when parameterized by the treewidth of the input graph. This leads, for example, to the following corollaries for specific classes C and D: - a largest induced forest in a P_t-free graph can be found in 2^{O~(n^{2/3})} time, for every fixed t; and - a largest induced planar graph in a string graph can be found in 2^{O~(n^{3/4})} time.
@InProceedings{novotna_et_al:LIPIcs.IPEC.2019.23, author = {Novotn\'{a}, Jana and Okrasa, Karolina and Pilipczuk, Micha{\l} and Rz\k{a}\.{z}ewski, Pawe{\l} and van Leeuwen, Erik Jan and Walczak, Bartosz}, title = {{Subexponential-Time Algorithms for Finding Large Induced Sparse Subgraphs}}, booktitle = {14th International Symposium on Parameterized and Exact Computation (IPEC 2019)}, pages = {23:1--23:11}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-129-0}, ISSN = {1868-8969}, year = {2019}, volume = {148}, editor = {Jansen, Bart M. P. and Telle, Jan Arne}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2019.23}, URN = {urn:nbn:de:0030-drops-114845}, doi = {10.4230/LIPIcs.IPEC.2019.23}, annote = {Keywords: subexponential algorithm, feedback vertex set, P\underlinet-free graphs, string graphs} }
Feedback for Dagstuhl Publishing