Bandwidth Parameterized by Cluster Vertex Deletion Number

Authors Tatsuya Gima , Eun Jung Kim , Noleen Köhler , Nikolaos Melissinos , Manolis Vasilakis



PDF
Thumbnail PDF

File

LIPIcs.IPEC.2023.21.pdf
  • Filesize: 0.8 MB
  • 15 pages

Document Identifiers

Author Details

Tatsuya Gima
  • JSPS Research Fellow, Nagoya University, Japan
Eun Jung Kim
  • Université Paris-Dauphine, PSL University, CNRS UMR7243, LAMSADE, Paris, France
Noleen Köhler
  • Université Paris-Dauphine, PSL University, CNRS UMR7243, LAMSADE, Paris, France
Nikolaos Melissinos
  • Department of Theoretical Computer Science, Faculty of Information Technology, Czech Technical University in Prague, Czech Republic
Manolis Vasilakis
  • Université Paris-Dauphine, PSL University, CNRS UMR7243, LAMSADE, Paris, France

Acknowledgements

We would like to thank Virginia Ardévol Martínez and Yota Otachi for interesting discussions at the preliminary stages of this work.

Cite AsGet BibTex

Tatsuya Gima, Eun Jung Kim, Noleen Köhler, Nikolaos Melissinos, and Manolis Vasilakis. Bandwidth Parameterized by Cluster Vertex Deletion Number. In 18th International Symposium on Parameterized and Exact Computation (IPEC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 285, pp. 21:1-21:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)
https://doi.org/10.4230/LIPIcs.IPEC.2023.21

Abstract

Given a graph G and an integer b, Bandwidth asks whether there exists a bijection π from V(G) to {1, …, |V(G)|} such that max_{{u, v} ∈ E(G)} | π(u) - π(v) | ≤ b. This is a classical NP-complete problem, known to remain NP-complete even on very restricted classes of graphs, such as trees of maximum degree 3 and caterpillars of hair length 3. In the realm of parameterized complexity, these results imply that the problem remains NP-hard on graphs of bounded pathwidth, while it is additionally known to be W[1]-hard when parameterized by the treedepth of the input graph. In contrast, the problem does become FPT when parameterized by the vertex cover number of the input graph. In this paper, we make progress towards the parameterized (in)tractability of Bandwidth. We first show that it is FPT when parameterized by the cluster vertex deletion number cvd plus the clique number ω of the input graph, thus generalizing the previously mentioned result for vertex cover. On the other hand, we show that Bandwidth is W[1]-hard when parameterized only by cvd. Our results generalize some of the previous results and narrow some of the complexity gaps.

Subject Classification

ACM Subject Classification
  • Theory of computation → Parameterized complexity and exact algorithms
Keywords
  • Bandwidth
  • Clique number
  • Cluster vertex deletion number
  • Parameterized complexity

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Olav Røthe Bakken. Arrangement problems parameterized by neighbourhood diversity. Master’s thesis, University of Bergen, 2018. Google Scholar
  2. Aritra Banik, Prahlad Narasimhan Kasthurirangan, and Venkatesh Raman. Dominator coloring and CD coloring in almost cluster graphs. In Algorithms and Data Structures - 18th International Symposium, WADS 2023, volume 14079 of Lecture Notes in Computer Science, pages 106-119. Springer, 2023. URL: https://doi.org/10.1007/978-3-031-38906-1_8.
  3. Hans L. Bodlaender. Parameterized complexity of bandwidth of caterpillars and weighted path emulation. In Graph-Theoretic Concepts in Computer Science - 47th International Workshop, WG 2021, volume 12911 of Lecture Notes in Computer Science, pages 15-27. Springer, 2021. URL: https://doi.org/10.1007/978-3-030-86838-3_2.
  4. Hans L. Bodlaender, Michael R. Fellows, and Michael T. Hallett. Beyond np-completeness for problems of bounded width: hardness for the W hierarchy. In Proceedings of the Twenty-Sixth Annual ACM Symposium on Theory of Computing, 23-25 May 1994, Montréal, Québec, Canada, pages 449-458. ACM, 1994. URL: https://doi.org/10.1145/195058.195229.
  5. Henning Bruhn, Morgan Chopin, Felix Joos, and Oliver Schaudt. Structural parameterizations for boxicity. Algorithmica, 74(4):1453-1472, 2016. URL: https://doi.org/10.1007/s00453-015-0011-0.
  6. Phyllis Z. Chinn, J. Chvatalova, A. K. Dewdney, and Norman E. Gibbs. The bandwidth problem for graphs and matrices - a survey. J. Graph Theory, 6(3):223-254, 1982. URL: https://doi.org/10.1002/jgt.3190060302.
  7. Janka Chlebíková and Morgan Chopin. The firefighter problem: A structural analysis. In Parameterized and Exact Computation - 9th International Symposium, IPEC 2014, volume 8894 of Lecture Notes in Computer Science, pages 172-183. Springer, 2014. URL: https://doi.org/10.1007/978-3-319-13524-3_15.
  8. Morgan Chopin, André Nichterlein, Rolf Niedermeier, and Mathias Weller. Constant thresholds can make target set selection tractable. Theory Comput. Syst., 55(1):61-83, 2014. URL: https://doi.org/10.1007/s00224-013-9499-3.
  9. Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015. URL: https://doi.org/10.1007/978-3-319-21275-3.
  10. Marek Cygan, Daniel Lokshtanov, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. On cutwidth parameterized by vertex cover. Algorithmica, 68(4):940-953, 2014. URL: https://doi.org/10.1007/s00453-012-9707-6.
  11. Marek Cygan and Marcin Pilipczuk. Exact and approximate bandwidth. Theor. Comput. Sci., 411(40-42):3701-3713, 2010. URL: https://doi.org/10.1016/j.tcs.2010.06.018.
  12. Marek Cygan and Marcin Pilipczuk. Bandwidth and distortion revisited. Discret. Appl. Math., 160(4-5):494-504, 2012. URL: https://doi.org/10.1016/j.dam.2011.10.032.
  13. Marek Cygan and Marcin Pilipczuk. Even faster exact bandwidth. ACM Trans. Algorithms, 8(1):8:1-8:14, 2012. URL: https://doi.org/10.1145/2071379.2071387.
  14. Josep Díaz, Jordi Petit, and Maria J. Serna. A survey of graph layout problems. ACM Comput. Surv., 34(3):313-356, 2002. URL: https://doi.org/10.1145/568522.568523.
  15. Reinhard Diestel. Graph Theory, volume 173 of Graduate texts in mathematics. Springer, 2017. URL: https://doi.org/10.1007/978-3-662-53622-3.
  16. Martin Doucha and Jan Kratochvíl. Cluster vertex deletion: A parameterization between vertex cover and clique-width. In Mathematical Foundations of Computer Science 2012 - 37th International Symposium, MFCS 2012, volume 7464 of Lecture Notes in Computer Science, pages 348-359. Springer, 2012. URL: https://doi.org/10.1007/978-3-642-32589-2_32.
  17. Markus Sortland Dregi and Daniel Lokshtanov. Parameterized complexity of bandwidth on trees. In Automata, Languages, and Programming - 41st International Colloquium, ICALP 2014, volume 8572 of Lecture Notes in Computer Science, pages 405-416. Springer, 2014. URL: https://doi.org/10.1007/978-3-662-43948-7_34.
  18. Michael R. Fellows, Danny Hermelin, Frances A. Rosamond, and Hadas Shachnai. Tractable parameterizations for the minimum linear arrangement problem. ACM Trans. Comput. Theory, 8(2):6:1-6:12, 2016. URL: https://doi.org/10.1145/2898352.
  19. Michael R. Fellows, Daniel Lokshtanov, Neeldhara Misra, Matthias Mnich, Frances A. Rosamond, and Saket Saurabh. The complexity ecology of parameters: An illustration using bounded max leaf number. Theory Comput. Syst., 45(4):822-848, 2009. URL: https://doi.org/10.1007/s00224-009-9167-9.
  20. Michael R. Fellows, Daniel Lokshtanov, Neeldhara Misra, Frances A. Rosamond, and Saket Saurabh. Graph layout problems parameterized by vertex cover. In Algorithms and Computation, 19th International Symposium, ISAAC 2008, volume 5369 of Lecture Notes in Computer Science, pages 294-305. Springer, 2008. URL: https://doi.org/10.1007/978-3-540-92182-0_28.
  21. András Frank and Éva Tardos. An application of simultaneous diophantine approximation in combinatorial optimization. Combinatorica, 7:49-65, 1987. URL: https://doi.org/10.1007/BF02579200.
  22. Martin Fürer, Serge Gaspers, and Shiva Prasad Kasiviswanathan. An exponential time 2-approximation algorithm for bandwidth. Theor. Comput. Sci., 511:23-31, 2013. URL: https://doi.org/10.1016/j.tcs.2013.03.024.
  23. Jakub Gajarský, Michael Lampis, and Sebastian Ordyniak. Parameterized algorithms for modular-width. In Parameterized and Exact Computation - 8th International Symposium, IPEC 2013, volume 8246 of Lecture Notes in Computer Science, pages 163-176. Springer, 2013. URL: https://doi.org/10.1007/978-3-319-03898-8_15.
  24. Robert Ganian. Twin-cover: Beyond vertex cover in parameterized algorithmics. In Parameterized and Exact Computation - 6th International Symposium, IPEC 2011, volume 7112 of Lecture Notes in Computer Science, pages 259-271. Springer, 2011. URL: https://doi.org/10.1007/978-3-642-28050-4_21.
  25. Robert Ganian, Petr Hlinený, Jaroslav Nesetril, Jan Obdrzálek, Patrice Ossona de Mendez, and Reshma Ramadurai. When trees grow low: Shrubs and fast MSO1. In Mathematical Foundations of Computer Science 2012 - 37th International Symposium, MFCS 2012, volume 7464 of Lecture Notes in Computer Science, pages 419-430. Springer, 2012. URL: https://doi.org/10.1007/978-3-642-32589-2_38.
  26. Robert Ganian, Eun Jung Kim, and Stefan Szeider. Algorithmic applications of tree-cut width. SIAM J. Discret. Math., 36(4):2635-2666, 2022. URL: https://doi.org/10.1137/20m137478x.
  27. M. R. Garey, R. L. Graham, D. S. Johnson, and D. E. Knuth. Complexity results for bandwidth minimization. SIAM Journal on Applied Mathematics, 34(3):477-495, 1978. URL: https://doi.org/10.1137/0134037.
  28. Tatsuya Gima, Tesshu Hanaka, Masashi Kiyomi, Yasuaki Kobayashi, and Yota Otachi. Exploring the gap between treedepth and vertex cover through vertex integrity. Theor. Comput. Sci., 918:60-76, 2022. URL: https://doi.org/10.1016/j.tcs.2022.03.021.
  29. Eitan M. Gurari and Ivan Hal Sudborough. Improved dynamic programming algorithms for bandwidth minimization and the mincut linear arrangement problem. J. Algorithms, 5(4):531-546, 1984. URL: https://doi.org/10.1016/0196-6774(84)90006-3.
  30. L. H. Harper. Optimal assignments of numbers to vertices. Journal of the Society for Industrial and Applied Mathematics, 12(1):131-135, 1964. URL: https://doi.org/10.1137/0112012.
  31. Klaus Jansen, Stefan Kratsch, Dániel Marx, and Ildikó Schlotter. Bin packing with fixed number of bins revisited. J. Comput. Syst. Sci., 79(1):39-49, 2013. URL: https://doi.org/10.1016/j.jcss.2012.04.004.
  32. Ravi Kannan. Minkowski’s convex body theorem and integer programming. Math. Oper. Res., 12:415-440, 1987. URL: https://doi.org/10.1287/moor.12.3.415.
  33. Anjeneya Swami Kare and I. Vinod Reddy. Parameterized algorithms for graph burning problem. In Combinatorial Algorithms - 30th International Workshop, IWOCA 2019, volume 11638 of Lecture Notes in Computer Science, pages 304-314. Springer, 2019. URL: https://doi.org/10.1007/978-3-030-25005-8_25.
  34. Martin Kucera and Ondrej Suchý. Minimum eccentricity shortest path problem with respect to structural parameters. Algorithmica, 85(3):762-782, 2023. URL: https://doi.org/10.1007/s00453-022-01006-x.
  35. Michael Lampis. Algorithmic meta-theorems for restrictions of treewidth. In Algorithms - ESA 2010, 18th Annual European Symposium, volume 6346 of Lecture Notes in Computer Science, pages 549-560. Springer, 2010. URL: https://doi.org/10.1007/978-3-642-15775-2_47.
  36. Hendrik W. Lenstra Jr. Integer programming with a fixed number of variables. Math. Oper. Res., 8(4):538-548, 1983. URL: https://doi.org/10.1287/moor.8.4.538.
  37. Daniel Lokshtanov. Parameterized integer quadratic programming: Variables and coefficients. CoRR, abs/1511.00310, 2015. URL: https://arxiv.org/abs/1511.00310.
  38. Diptapriyo Majumdar and Venkatesh Raman. FPT algorithms for FVS parameterized by split and cluster vertex deletion sets and other parameters. In Frontiers in Algorithmics - 11th International Workshop, FAW 2017, volume 10336 of Lecture Notes in Computer Science, pages 209-220. Springer, 2017. URL: https://doi.org/10.1007/978-3-319-59605-1_19.
  39. Neeldhara Misra and Harshil Mittal. Imbalance parameterized by twin cover revisited. Theor. Comput. Sci., 895:1-15, 2021. URL: https://doi.org/10.1016/j.tcs.2021.09.017.
  40. Burkhard Monien. The bandwidth minimization problem for caterpillars with hair length 3 is np-complete. SIAM Journal on Algebraic Discrete Methods, 7(4):505-512, 1986. URL: https://doi.org/10.1137/0607057.
  41. David Muradian. The bandwidth minimization problem for cyclic caterpillars with hair length 1 is np-complete. Theor. Comput. Sci., 307(3):567-572, 2003. URL: https://doi.org/10.1016/S0304-3975(03)00238-X.
  42. Jaroslav Nesetril and Patrice Ossona de Mendez. Tree-depth, subgraph coloring and homomorphism bounds. Eur. J. Comb., 27(6):1022-1041, 2006. URL: https://doi.org/10.1016/j.ejc.2005.01.010.
  43. Christos H. Papadimitriou. The np-completeness of the bandwidth minimization problem. Computing, 16(3):263-270, 1976. URL: https://doi.org/10.1007/BF02280884.
  44. James B. Saxe. Dynamic-programming algorithms for recognizing small-bandwidth graphs in polynomial time. SIAM J. Algebraic Discret. Methods, 1(4):363-369, 1980. URL: https://doi.org/10.1137/0601042.