Twin-Width of Graphs with Tree-Structured Decompositions

Authors Irene Heinrich , Simon Raßmann



PDF
Thumbnail PDF

File

LIPIcs.IPEC.2023.25.pdf
  • Filesize: 0.77 MB
  • 17 pages

Document Identifiers

Author Details

Irene Heinrich
  • Technische Universität Darmstadt, Germany
Simon Raßmann
  • Technische Universität Darmstadt, Germany

Cite As Get BibTex

Irene Heinrich and Simon Raßmann. Twin-Width of Graphs with Tree-Structured Decompositions. In 18th International Symposium on Parameterized and Exact Computation (IPEC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 285, pp. 25:1-25:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023) https://doi.org/10.4230/LIPIcs.IPEC.2023.25

Abstract

The twin-width of a graph measures its distance to co-graphs and generalizes classical width concepts such as tree-width or rank-width. Since its introduction in 2020 [Édouard Bonnet et al., 2022; Édouard Bonnet et al., 2020], a mass of new results has appeared relating twin width to group theory, model theory, combinatorial optimization, and structural graph theory.
We take a detailed look at the interplay between the twin-width of a graph and the twin-width of its components under tree-structured decompositions: We prove that the twin-width of a graph is at most twice its strong tree-width, contrasting nicely with the result of [Édouard Bonnet and Hugues Déprés, 2023; Édouard Bonnet and Hugues Déprés, 2022], which states that twin-width can be exponential in tree-width. Further, we employ the fundamental concept from structural graph theory of decomposing a graph into highly connected components, in order to obtain optimal linear bounds on the twin-width of a graph given the widths of its biconnected components. For triconnected components we obtain a linear upper bound if we add red edges to the components indicating the splits which led to the components. Extending this approach to quasi-4-connectivity, we obtain a quadratic upper bound. Finally, we investigate how the adhesion of a tree decomposition influences the twin-width of the decomposed graph.

Subject Classification

ACM Subject Classification
  • Theory of computation → Fixed parameter tractability
  • Mathematics of computing → Graph algorithms
  • Mathematics of computing → Paths and connectivity problems
Keywords
  • twin-width
  • quasi-4 connected components
  • strong tree-width

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Jungho Ahn, Kevin Hendrey, Donggyu Kim, and Sang-il Oum. Bounds for the Twin-Width of Graphs. SIAM Journal on Discrete Mathematics, 36(3):2352-2366, 2022. URL: https://doi.org/10.1137/21M1452834.
  2. Pierre Bergé, Édouard Bonnet, and Hugues Déprés. Deciding twin-width at most 4 is np-complete. CoRR, abs/2112.08953, 2021. URL: https://arxiv.org/abs/2112.08953.
  3. Pierre Bergé, Édouard Bonnet, and Hugues Déprés. Deciding Twin-Width at Most 4 Is NP-Complete. In Mikołaj Bojańczyk, Emanuela Merelli, and David P. Woodruff, editors, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022), volume 229 of Leibniz International Proceedings in Informatics (LIPIcs), pages 18:1-18:20, Dagstuhl, Germany, 2022. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.ICALP.2022.18.
  4. Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput., 25(6):1305-1317, 1996. URL: https://doi.org/10.1137/S0097539793251219.
  5. Hans L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theor. Comput. Sci., 209(1-2):1-45, 1998. URL: https://doi.org/10.1016/S0304-3975(97)00228-4.
  6. Édouard Bonnet and Hugues Déprés. Twin-width can be exponential in treewidth. CoRR, abs/2204.07670, 2022. URL: https://doi.org/10.48550/arXiv.2204.07670.
  7. Édouard Bonnet and Hugues Déprés. Twin-width can be exponential in treewidth. J. Comb. Theory, Ser. B, 161:1-14, 2023. URL: https://doi.org/10.1016/j.jctb.2023.01.003.
  8. Édouard Bonnet, Colin Geniet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-width III: max independent set and coloring. CoRR, abs/2007.14161, 2020. URL: https://arxiv.org/abs/2007.14161.
  9. Édouard Bonnet, Colin Geniet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-width III: max independent set, min dominating set, and coloring. In Nikhil Bansal, Emanuela Merelli, and James Worrell, editors, 48th International Colloquium on Automata, Languages, and Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual Conference), volume 198 of LIPIcs, pages 35:1-35:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPIcs.ICALP.2021.35.
  10. Édouard Bonnet, Eun Jung Kim, Amadeus Reinald, and Stéphan Thomassé. Twin-width VI: the lens of contraction sequences. CoRR, abs/2111.00282, 2021. URL: https://arxiv.org/abs/2111.00282.
  11. Édouard Bonnet, Eun Jung Kim, Amadeus Reinald, and Stéphan Thomassé. Twin-width VI: the lens of contraction sequences. In Joseph (Seffi) Naor and Niv Buchbinder, editors, Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA 2022, Virtual Conference / Alexandria, VA, USA, January 9 - 12, 2022, pages 1036-1056. SIAM, 2022. URL: https://doi.org/10.1137/1.9781611977073.45.
  12. Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-width I: tractable FO model checking. CoRR, abs/2004.14789, 2020. URL: https://arxiv.org/abs/2004.14789.
  13. Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-width I: tractable FO model checking. J. ACM, 69(1):3:1-3:46, 2022. URL: https://doi.org/10.1145/3486655.
  14. Martin Grohe. Quasi-4-connected components. In Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi, editors, 43rd International Colloquium on Automata, Languages, and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy, volume 55 of LIPIcs, pages 8:1-8:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. URL: https://doi.org/10.4230/LIPIcs.ICALP.2016.8.
  15. Martin Grohe. Quasi-4-connected components. CoRR, abs/1602.04505, 2016. URL: https://arxiv.org/abs/1602.04505.
  16. R. Halin. Tree-partitions of infinite graphs. Discrete Mathematics, 97(1):203-217, 1991. URL: https://doi.org/10.1016/0012-365X(91)90436-6.
  17. Irene Heinrich and Simon Raßmann. Twin-width of graphs with tree-structured decompositions, 2023. URL: https://arxiv.org/abs/2308.14677.
  18. John E. Hopcroft and Robert Endre Tarjan. Dividing a graph into triconnected components. SIAM J. Comput., 2:135-158, 1973. Google Scholar
  19. Hugo Jacob and Marcin Pilipczuk. Bounding twin-width for bounded-treewidth graphs, planar graphs, and bipartite graphs. In Michael A. Bekos and Michael Kaufmann, editors, Graph-Theoretic Concepts in Computer Science - 48th International Workshop, WG 2022, Tübingen, Germany, June 22-24, 2022, Revised Selected Papers, volume 13453 of Lecture Notes in Computer Science, pages 287-299. Springer, 2022. URL: https://doi.org/10.1007/978-3-031-15914-5_21.
  20. Hugo Jacob and Marcin Pilipczuk. Bounding twin-width for bounded-treewidth graphs, planar graphs, and bipartite graphs. CoRR, abs/2201.09749, 2022. URL: https://arxiv.org/abs/2201.09749.
  21. Gonne Kretschmer. Calculating twin-width of graphs. Bachelor’s thesis, Technische Universität Darmstadt, 2023. Google Scholar
  22. D. Lubell. A short proof of sperner’s lemma. Journal of Combinatorial Theory, 1(2):299, 1966. URL: https://doi.org/10.1016/S0021-9800(66)80035-2.
  23. D. Seese. Tree-partite graphs and the complexity of algorithms. In Lothar Budach, editor, Fundamentals of Computation Theory, Lecture Notes in Computer Science, pages 412-421. Springer, 1985. URL: https://doi.org/10.1007/BFb0028825.
  24. Douglas Brent West et al. Introduction to graph theory, volume 2. Prentice hall Upper Saddle River, 2001. Google Scholar
  25. David R. Wood. On tree-partition-width. European Journal of Combinatorics, 30(5):1245-1253, 2009. URL: https://doi.org/10.1016/j.ejc.2008.11.010.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail