Treewidth Is NP-Complete on Cubic Graphs

Authors Hans L. Bodlaender , Édouard Bonnet , Lars Jaffke , Dušan Knop , Paloma T. Lima , Martin Milanič , Sebastian Ordyniak , Sukanya Pandey , Ondřej Suchý



PDF
Thumbnail PDF

File

LIPIcs.IPEC.2023.7.pdf
  • Filesize: 0.9 MB
  • 13 pages

Document Identifiers

Author Details

Hans L. Bodlaender
  • Utrecht University, The Netherlands
Édouard Bonnet
  • LIP, ENS Lyon, France
Lars Jaffke
  • University of Bergen, Norway
Dušan Knop
  • Czech Technical University in Prague, Czech Republic
Paloma T. Lima
  • IT University of Copenhagen, Denmark
Martin Milanič
  • FAMNIT and IAM, University of Primorska, Koper, Slovenia
Sebastian Ordyniak
  • University of Leeds, UK
Sukanya Pandey
  • Utrecht University, The Netherlands
Ondřej Suchý
  • Czech Technical University in Prague, Czech Republic

Acknowledgements

This research was conducted in the Lorentz Center, Leiden, the Netherlands, during the workshop Graph Decompositions: Small Width, Big Challenges, October 24-28, 2022.

Cite AsGet BibTex

Hans L. Bodlaender, Édouard Bonnet, Lars Jaffke, Dušan Knop, Paloma T. Lima, Martin Milanič, Sebastian Ordyniak, Sukanya Pandey, and Ondřej Suchý. Treewidth Is NP-Complete on Cubic Graphs. In 18th International Symposium on Parameterized and Exact Computation (IPEC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 285, pp. 7:1-7:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)
https://doi.org/10.4230/LIPIcs.IPEC.2023.7

Abstract

In this paper, we show that Treewidth is NP-complete for cubic graphs, thereby improving the result by Bodlaender and Thilikos from 1997 that Treewidth is NP-complete on graphs with maximum degree at most 9. We add a new and simpler proof of the NP-completeness of treewidth, and show that Treewidth remains NP-complete on subcubic induced subgraphs of the infinite 3-dimensional grid.

Subject Classification

ACM Subject Classification
  • Theory of computation → Problems, reductions and completeness
Keywords
  • Treewidth
  • cubic graphs
  • degree
  • NP-completeness

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Stefan Arnborg, Derek G. Corneil, and Andrzej Proskurowski. Complexity of finding embeddings in a k-tree. SIAM Journal on Algebraic and Discrete Methods, 8(2):277-284, 1987. URL: https://doi.org/10.1137/0608024.
  2. Stefan Arnborg and Andrzej Proskurowski. Characterization and recognition of partial 3-trees. SIAM Journal on Algebraic Discrete Methods, 7(2):305-314, 1986. URL: https://doi.org/10.1137/0607033.
  3. Hans L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theoretical Computer Science, 209(1-2):1-45, 1998. URL: https://doi.org/10.1016/S0304-3975(97)00228-4.
  4. Hans L. Bodlaender and Dimitrios M. Thilikos. Treewidth for graphs with small chordality. Discrete Applied Mathematics, 79(1-3):45-61, 1997. URL: https://doi.org/10.1016/S0166-218X(97)00031-0.
  5. Nancy G. Kinnersley. The vertex separation number of a graph equals its path-width. Information Processing Letters, 42(6):345-350, 1992. URL: https://doi.org/10.1016/0020-0190(92)90234-M.
  6. B. Monien and I. H. Sudborough. Min cut is NP-complete for edge weighted trees. Theoret. Comput. Sci., 58(1-3):209-229, 1988. URL: https://doi.org/10.1016/0304-3975(88)90028-X.
  7. Paul D. Seymour and Robin Thomas. Call routing and the ratcatcher. Combinatorica, 14(2):217-241, 1994. URL: https://doi.org/10.1007/BF01215352.