,
Édouard Bonnet
,
Lars Jaffke
,
Dušan Knop
,
Paloma T. Lima
,
Martin Milanič
,
Sebastian Ordyniak
,
Sukanya Pandey
,
Ondřej Suchý
Creative Commons Attribution 4.0 International license
In this paper, we show that Treewidth is NP-complete for cubic graphs, thereby improving the result by Bodlaender and Thilikos from 1997 that Treewidth is NP-complete on graphs with maximum degree at most 9. We add a new and simpler proof of the NP-completeness of treewidth, and show that Treewidth remains NP-complete on subcubic induced subgraphs of the infinite 3-dimensional grid.
@InProceedings{bodlaender_et_al:LIPIcs.IPEC.2023.7,
author = {Bodlaender, Hans L. and Bonnet, \'{E}douard and Jaffke, Lars and Knop, Du\v{s}an and Lima, Paloma T. and Milani\v{c}, Martin and Ordyniak, Sebastian and Pandey, Sukanya and Such\'{y}, Ond\v{r}ej},
title = {{Treewidth Is NP-Complete on Cubic Graphs}},
booktitle = {18th International Symposium on Parameterized and Exact Computation (IPEC 2023)},
pages = {7:1--7:13},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-305-8},
ISSN = {1868-8969},
year = {2023},
volume = {285},
editor = {Misra, Neeldhara and Wahlstr\"{o}m, Magnus},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2023.7},
URN = {urn:nbn:de:0030-drops-194263},
doi = {10.4230/LIPIcs.IPEC.2023.7},
annote = {Keywords: Treewidth, cubic graphs, degree, NP-completeness}
}