Combining Crown Structures for Vulnerability Measures

Authors Katrin Casel , Tobias Friedrich , Aikaterini Niklanovits , Kirill Simonov , Ziena Zeif



PDF
Thumbnail PDF

File

LIPIcs.IPEC.2024.1.pdf
  • Filesize: 0.82 MB
  • 15 pages

Document Identifiers

Author Details

Katrin Casel
  • Humboldt Universität zu Berlin, Germany
Tobias Friedrich
  • Hasso Plattner Institute, University of Potsdam, Germany
Aikaterini Niklanovits
  • Hasso Plattner Institute, University of Potsdam, Germany
Kirill Simonov
  • Hasso Plattner Institute, University of Potsdam, Germany
Ziena Zeif
  • Hasso Plattner Institute, University of Potsdam, Germany

Cite As Get BibTex

Katrin Casel, Tobias Friedrich, Aikaterini Niklanovits, Kirill Simonov, and Ziena Zeif. Combining Crown Structures for Vulnerability Measures. In 19th International Symposium on Parameterized and Exact Computation (IPEC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 321, pp. 1:1-1:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024) https://doi.org/10.4230/LIPIcs.IPEC.2024.1

Abstract

Over the past decades, various metrics have emerged in graph theory to grasp the complex nature of network vulnerability. In this paper, we study two specific measures: (weighted) vertex integrity (wVI) and (weighted) component order connectivity (wCOC). These measures not only evaluate the number of vertices that need to be removed to decompose a graph into fragments, but also take into account the size of the largest remaining component. The main focus of our paper is on kernelization algorithms tailored to both measures. We capitalize on the structural attributes inherent in different crown decompositions, strategically combining them to introduce novel kernelization algorithms that advance the current state of the field. In particular, we extend the scope of the balanced crown decomposition provided by Casel et al. [Katrin Casel et al., 2021] and expand the applicability of crown decomposition techniques.
In summary, we improve the vertex kernel of VI from p³ to 3p², and of wVI from p³ to 3(p² + p^{1.5} p_𝓁), where p_𝓁 < p represents the weight of the heaviest component after removing a solution. For wCOC we improve the vertex kernel from 𝒪(k²W + kW²) to 3μ(k + √{μ}W), where μ = max(k,W). We also give a combinatorial algorithm that provides a 2kW vertex kernel in fixed-parameter tractable time when parameterized by r, where r ≤ k is the size of a maximum (W+1)-packing. We further show that the algorithm computing the 2kW vertex kernel for COC can be transformed into a polynomial algorithm for two special cases, namely when W = 1, which corresponds to the well-known vertex cover problem, and for claw-free graphs. In particular, we show a new way to obtain a 2k vertex kernel (or to obtain a 2-approximation) for the vertex cover problem by only using crown structures.

Subject Classification

ACM Subject Classification
  • Theory of computation → Graph algorithms analysis
Keywords
  • Crown Decomposition
  • Kernelization
  • Vertex Integrity
  • Component Order Connectivity

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Kunwarjit S. Bagga, Lowell W. Beineke, Wayne Goddard, Marc J. Lipman, and Raymond E. Pippert. A survey of integrity. Discret. Appl. Math., 37/38:13-28, 1992. URL: https://doi.org/10.1016/0166-218X(92)90122-Q.
  2. Curtis A Barefoot, Roger Entringer, and Henda Swart. Vulnerability in graphs-a comparative survey. J. Combin. Math. Combin. Comput, 1(38):13-22, 1987. Google Scholar
  3. Matthias Bentert, Klaus Heeger, and Tomohiro Koana. Fully polynomial-time algorithms parameterized by vertex integrity using fast matrix multiplication. In Inge Li Gørtz, Martin Farach-Colton, Simon J. Puglisi, and Grzegorz Herman, editors, 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands, volume 274 of LIPIcs, pages 16:1-16:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPICS.ESA.2023.16.
  4. Ralf Borndörfer, Katrin Casel, Davis Issac, Aikaterini Niklanovits, Stephan Schwartz, and Ziena Zeif. Connected k-partition of k-connected graphs and c-claw-free graphs. In Mary Wootters and Laura Sanità, editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2021, August 16-18, 2021, University of Washington, Seattle, Washington, USA (Virtual Conference), volume 207 of LIPIcs, pages 27:1-27:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPICS.APPROX/RANDOM.2021.27.
  5. Katrin Casel, Tobias Friedrich, Davis Issac, Aikaterini Niklanovits, and Ziena Zeif. Balanced crown decomposition for connectivity constraints. In 29th Annual European Symposium on Algorithms, ESA 2021, September 6-8, 2021, Lisbon, Portugal (Virtual Conference), volume 204 of LIPIcs, pages 26:1-26:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPIcs.ESA.2021.26.
  6. Katrin Casel, Tobias Friedrich, Aikaterini Niklanovits, Kirill Simonov, and Ziena Zeif. Combining crown structures for vulnerability measures. CoRR, abs/2405.02378, 2024. URL: https://doi.org/10.48550/arXiv.2405.02378.
  7. Jianer Chen, Henning Fernau, Peter Shaw, Jianxin Wang, and Zhibiao Yang. Kernels for packing and covering problems. Theor. Comput. Sci., 790:152-166, 2019. URL: https://doi.org/10.1016/J.TCS.2019.04.018.
  8. Lane H Clark, Roger C Entringer, and Michael R Fellows. Computational complexity of integrity. J. Combin. Math. Combin. Comput, 2:179-191, 1987. Google Scholar
  9. Rodney G Downey and Michael Ralph Fellows. Parameterized complexity. Springer Science & Business Media, 2012. URL: https://doi.org/10.1007/978-1-4612-0515-9.
  10. Pål Grønås Drange, Markus S. Dregi, and Pim van 't Hof. On the computational complexity of vertex integrity and component order connectivity. Algorithmica, 76(4):1181-1202, 2016. URL: https://doi.org/10.1007/s00453-016-0127-x.
  11. Michael R Fellows and Sam Stueckle. The immersion order, forbidden subgraphs and the complexity of network integrity. J. Combin. Math. Combin. Comput, 6(1):23-32, 1989. Google Scholar
  12. Fedor V Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Kernelization: theory of parameterized preprocessing. Cambridge University Press, 2019. URL: https://doi.org/10.1017/9781107415157.
  13. Tatsuya Gima, Tesshu Hanaka, Masashi Kiyomi, Yasuaki Kobayashi, and Yota Otachi. Exploring the gap between treedepth and vertex cover through vertex integrity. Theor. Comput. Sci., 918:60-76, 2022. URL: https://doi.org/10.1016/J.TCS.2022.03.021.
  14. Tatsuya Gima, Tesshu Hanaka, Yasuaki Kobayashi, Ryota Murai, Hirotaka Ono, and Yota Otachi. Structural parameterizations of vertex integrity. In Ryuhei Uehara, Katsuhisa Yamanaka, and Hsu-Chun Yen, editors, WALCOM: Algorithms and Computation - 18th International Conference and Workshops on Algorithms and Computation, WALCOM 2024, Kanazawa, Japan, March 18-20, 2024, Proceedings, volume 14549 of Lecture Notes in Computer Science, pages 406-420. Springer, 2024. URL: https://doi.org/10.1007/978-981-97-0566-5_29.
  15. Tatsuya Gima and Yota Otachi. Extended MSO model checking via small vertex integrity. Algorithmica, 86(1):147-170, 2024. URL: https://doi.org/10.1007/S00453-023-01161-9.
  16. Tesshu Hanaka, Michael Lampis, Manolis Vasilakis, and Kanae Yoshiwatari. Parameterized vertex integrity revisited. CoRR, abs/2402.09971, 2024. URL: https://doi.org/10.48550/arXiv.2402.09971.
  17. Ashwin Jacob, Diptapriyo Majumdar, and Venkatesh Raman. Expansion lemma - variations and applications to polynomial-time preprocessing. Algorithms, 16(3):144, 2023. URL: https://doi.org/10.3390/A16030144.
  18. Dieter Kratsch, Ton Kloks, and Haiko Müller. Measuring the vulnerability for classes of intersection graphs. Discret. Appl. Math., 77(3):259-270, 1997. URL: https://doi.org/10.1016/S0166-218X(96)00133-3.
  19. Mithilesh Kumar and Daniel Lokshtanov. A 2lk kernel for l-component order connectivity. In Jiong Guo and Danny Hermelin, editors, 11th International Symposium on Parameterized and Exact Computation, IPEC 2016, August 24-26, 2016, Aarhus, Denmark, volume 63 of LIPIcs, pages 20:1-20:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. URL: https://doi.org/10.4230/LIPIcs.IPEC.2016.20.
  20. Michael Lampis and Valia Mitsou. Fine-grained meta-theorems for vertex integrity. In Hee-Kap Ahn and Kunihiko Sadakane, editors, 32nd International Symposium on Algorithms and Computation, ISAAC 2021, December 6-8, 2021, Fukuoka, Japan, volume 212 of LIPIcs, pages 34:1-34:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPICS.ISAAC.2021.34.
  21. Euiwoong Lee. Partitioning a graph into small pieces with applications to path transversal. Math. Program., 177(1-2):1-19, 2019. URL: https://doi.org/10.1007/s10107-018-1255-7.
  22. Wenjun Li and Binhai Zhu. A 2k-kernelization algorithm for vertex cover based on crown decomposition. Theor. Comput. Sci., 739:80-85, 2018. URL: https://doi.org/10.1016/J.TCS.2018.05.004.
  23. Yinkui Li, Shenggui Zhang, and Qilong Zhang. Vulnerability parameters of split graphs. Int. J. Comput. Math., 85(1):19-23, 2008. URL: https://doi.org/10.1080/00207160701365721.
  24. Mingyu Xiao. Linear kernels for separating a graph into components of bounded size. J. Comput. Syst. Sci., 88:260-270, 2017. URL: https://doi.org/10.1016/J.JCSS.2017.04.004.
  25. Mingyu Xiao and Shaowei Kou. Kernelization and parameterized algorithms for 3-path vertex cover. In T. V. Gopal, Gerhard Jäger, and Silvia Steila, editors, Theory and Applications of Models of Computation - 14th Annual Conference, TAMC 2017, Bern, Switzerland, April 20-22, 2017, Proceedings, volume 10185 of Lecture Notes in Computer Science, pages 654-668, 2017. URL: https://doi.org/10.1007/978-3-319-55911-7_47.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail