The Parameterized Complexity Landscape of Two-Sets Cut-Uncut

Authors Matthias Bentert, Fedor V. Fomin , Fanny Hauser, Saket Saurabh



PDF
Thumbnail PDF

File

LIPIcs.IPEC.2024.14.pdf
  • Filesize: 0.82 MB
  • 23 pages

Document Identifiers

Author Details

Matthias Bentert
  • University of Bergen, Norway
Fedor V. Fomin
  • University of Bergen, Norway
Fanny Hauser
  • Technische Universität Berlin, Germany
  • University of Bergen, Norway
Saket Saurabh
  • The Institute of Mathematical Sciences, Chennai, India
  • University of Bergen, Norway

Cite As Get BibTex

Matthias Bentert, Fedor V. Fomin, Fanny Hauser, and Saket Saurabh. The Parameterized Complexity Landscape of Two-Sets Cut-Uncut. In 19th International Symposium on Parameterized and Exact Computation (IPEC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 321, pp. 14:1-14:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024) https://doi.org/10.4230/LIPIcs.IPEC.2024.14

Abstract

In Two-Sets Cut-Uncut, we are given an undirected graph G = (V,E) and two terminal sets S and T. The task is to find a minimum cut C in G (if there is any) separating S from T under the following "uncut" condition. In the graph (V,E⧵C), the terminals in each terminal set remain in the same connected component. In spite of the superficial similarity to the classic problem Minimum s-t-Cut, Two-Sets Cut-Uncut is computationally challenging. In particular, even deciding whether such a cut of any size exists, is already NP-complete. We initiate a systematic study of Two-Sets Cut-Uncut within the context of parameterized complexity. By leveraging known relations between many well-studied graph parameters, we characterize the structural properties of input graphs that allow for polynomial kernels, fixed-parameter tractability (FPT), and slicewise polynomial algorithms (XP). Our main contribution is the near-complete establishment of the complexity of these algorithmic properties within the described hierarchy of graph parameters.
On a technical level, our main results are fixed-parameter tractability for the (vertex-deletion) distance to cographs and an OR-cross composition excluding polynomial kernels for the vertex cover number of the input graph (under the standard complexity assumption NP ̸ ⊆ coNP/poly).

Subject Classification

ACM Subject Classification
  • Theory of computation → Parameterized complexity and exact algorithms
  • Theory of computation → Problems, reductions and completeness
  • Mathematics of computing → Paths and connectivity problems
  • Mathematics of computing → Graph algorithms
  • Mathematics of computing → Graph coloring
Keywords
  • Fixed-parameter tractability
  • Polynomial Kernels
  • W[1]-hardness
  • XP
  • para-NP-Hardness

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Matthias Bentert, Alexander Dittmann, Leon Kellerhals, André Nichterlein, and Rolf Niedermeier. An adaptive version of Brandes' algorithm for betweenness centrality. Journal of Graph Algorithms and Applications, 24(3):483-522, 2020. URL: https://doi.org/10.7155/JGAA.00543.
  2. Matthias Bentert, Pål Grønas Drange, Fedor V. Fomin, Petr A. Golovach, and Tuukka Korhonen. Two-sets cut-uncut in planar graphs. In Proceedings of the 51st International Colloquium on Automata, Languages, and Programming (ICALP), pages 22:1-22:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024. URL: https://doi.org/10.4230/LIPICS.ICALP.2024.22.
  3. Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. Kernelization lower bounds by cross-composition. SIAM Journal on Discrete Mathematics, 28(1):277-305, 2014. URL: https://doi.org/10.1137/120880240.
  4. Jan #2Brand#-#-#van den Brand, Li Chen, Richard Peng, Rasmus Kyng, Yang P. Liu, Maximilian Probst Gutenberg, Sushant Sachdeva, and Aaron Sidford. A deterministic almost-linear time algorithm for minimum-cost flow. In Proceedings of the 64th IEEE Annual Symposium on Foundations of Computer Science (FOCS), pages 503-514. IEEE, 2023. URL: https://doi.org/10.1109/FOCS57990.2023.00037.
  5. Christopher Cullenbine, R. Kevin Wood, and Alexandra M. Newman. Theoretical and computational advances for network diversion. Networks, 62(3):225-242, 2013. URL: https://doi.org/10.1002/NET.21514.
  6. Norman D. Curet. The network diversion problem. Military Operations Research, 6(2):35-44, 2001. Google Scholar
  7. Marek Cygan, Marcin Pilipczuk, Michal Pilipczuk, and Jakub Onufry Wojtaszczyk. Solving the 2-disjoint connected subgraphs problem faster than 2ⁿ. Algorithmica, 70(2):195-207, 2014. URL: https://doi.org/10.1007/S00453-013-9796-X.
  8. Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity. Springer, 2013. URL: https://doi.org/10.1007/978-1-4471-5559-1.
  9. Gabriel L. Duarte, Hiroshi Eto, Tesshu Hanaka, Yasuaki Kobayashi, Yusuke Kobayashi, Daniel Lokshtanov, Lehilton L. C. Pedrosa, Rafael C. S. Schouery, and Uéverton S. Souza. Computing the largest bond and the maximum connected cut of a graph. Algorithmica, 83(5):1421-1458, 2021. URL: https://doi.org/10.1007/S00453-020-00789-1.
  10. Ozgur Erken. A branch-and-bound algorithm for the network diversion problem. PhD thesis, Naval Postgraduate School, 2002. Google Scholar
  11. Herbert Fleischner, Gert Sabidussi, and Vladimir I. Sarvanov. Maximum independent sets in 3- and 4-regular Hamiltonian graphs. Discrete Mathematics, 310(20):2742-2749, 2010. URL: https://doi.org/10.1016/J.DISC.2010.05.028.
  12. Chris Gray, Frank Kammer, Maarten Löffler, and Rodrigo I. Silveira. Removing local extrema from imprecise terrains. Computational Geometry: Theory and Applications, 45(7):334-349, 2012. URL: https://doi.org/10.1016/J.COMGEO.2012.02.002.
  13. Pim #2Hof#-#-#van ’t Hof, Daniël Paulusma, and Gerhard J. Woeginger. Partitioning graphs into connected parts. Theoretical Computer Science, 410(47-49):4834-4843, 2009. URL: https://doi.org/10.1016/J.TCS.2009.06.028.
  14. Benjamin S. Kallemyn. Modeling Network Interdiction Tasks. PhD thesis, Air Force Institute of Technology, 2015. Google Scholar
  15. Walter Kern, Barnaby Martin, Daniël Paulusma, Siani Smith, and Erik Jan van Leeuwen. Disjoint paths and connected subgraphs for H-free graphs. Theoretical Computer Science, 898:59-68, 2022. URL: https://doi.org/10.1016/J.TCS.2021.10.019.
  16. Chungmok Lee, Donghyun Cho, and Sungsoo Park. A combinatorial Benders decomposition algorithm for the directed multiflow network diversion problem. Military Operations Research, 24(1):23-40, 2019. Google Scholar
  17. James Nastos and Yong Gao. Bounded search tree algorithms for parametrized cograph deletion: Efficient branching rules by exploiting structures of special graph classes. Discrete Mathematics, Algorithms and Applications, 4(1), 2012. URL: https://doi.org/10.1142/S1793830912500085.
  18. Daniël Paulusma and Johan M. M. van Rooij. On partitioning a graph into two connected subgraphs. Theoretical Computer Science, 412(48):6761-6769, 2011. URL: https://doi.org/10.1016/J.TCS.2011.09.001.
  19. Ashutosh Rai, M. S. Ramanujan, and Saket Saurabh. A parameterized algorithm for mixed-cut. In Proceedings of the 12th Latin American Symposium on Theoretical Informatics LATIN, pages 672-685. Springer, 2016. URL: https://doi.org/10.1007/978-3-662-49529-2_50.
  20. Neil Robertson and Paul D. Seymour. Graph minors XIII: The disjoint paths problem. Journal of Combinatorial Theory, Series B, 63(1):65-110, 1995. URL: https://doi.org/10.1006/JCTB.1995.1006.
  21. Johannes C. B. Schröder. Comparing graph parameters. Bachelor’s thesis, Technische Universität Berlin, 2019. Google Scholar
  22. Jan Arne Telle and Yngve Villanger. Connecting terminals and 2-disjoint connected subgraphs. In Proceedings of the 39th International Workshop on Graph-Theoretic Concepts in Computer Science (WG), pages 418-428. Springer, 2013. URL: https://doi.org/10.1007/978-3-642-45043-3_36.
  23. Craig A. Tovey. A simplified NP-complete satisfiability problem. Discrete Applied Mathematics, 8(1):85-89, 1984. URL: https://doi.org/10.1016/0166-218X(84)90081-7.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail