Modularity Clustering Parameterized by Max Leaf Number

Authors Jaroslav Garvardt , Christian Komusiewicz



PDF
Thumbnail PDF

File

LIPIcs.IPEC.2024.16.pdf
  • Filesize: 0.73 MB
  • 14 pages

Document Identifiers

Author Details

Jaroslav Garvardt
  • Institute of Computer Science, Friedrich Schiller University Jena, Germany
Christian Komusiewicz
  • Institute of Computer Science, Friedrich Schiller University Jena, Germany

Cite As Get BibTex

Jaroslav Garvardt and Christian Komusiewicz. Modularity Clustering Parameterized by Max Leaf Number. In 19th International Symposium on Parameterized and Exact Computation (IPEC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 321, pp. 16:1-16:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024) https://doi.org/10.4230/LIPIcs.IPEC.2024.16

Abstract

The modularity score is one of the most important measures for assessing the quality of clusterings of undirected graphs. In the notoriously difficult Modularity problem, one is given an undirected graph G and the task is to find a clustering with maximum modularity. We show that Modularity is fixed-parameter tractable with respect to the max leaf number of G. This improves on a previous result by Meeks and Skerman [Algorithmica '20] who showed an XP-algorithm for this parameter. In addition, we strengthen previous hardness results for Modularity by showing W[1]-hardness for the parameter vertex deletion distance to disjoint union of stars.

Subject Classification

ACM Subject Classification
  • Theory of computation → Fixed parameter tractability
Keywords
  • Graph clustering
  • parameterized complexity

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. James P Bagrow. Communities and bottlenecks: Trees and treelike networks have high modularity. Physical Review E, 85(6):066118, 2012. URL: https://doi.org/10.1103/PhysRevE.85.066118.
  2. Václav Blazej, Dusan Knop, Jan Pokorný, and Simon Schierreich. Equitable connected partition and structural parameters revisited: N-fold beats lenstra. CoRR, abs/2404.18968, 2024. URL: https://doi.org/10.48550/arXiv.2404.18968.
  3. Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10):P10008, 2008. URL: https://doi.org/10.1088/1742-5468/2008/10/P10008.
  4. Ulrik Brandes, Daniel Delling, Marco Gaertler, Robert Görke, Martin Hoefer, Zoran Nikoloski, and Dorothea Wagner. On modularity clustering. IEEE Transactions on Knowledge and Data Engineering, 20(2):172-188, 2008. URL: https://doi.org/10.1109/TKDE.2007.190689.
  5. Aaron Clauset, Mark EJ Newman, and Cristopher Moore. Finding community structure in very large networks. Physical Review E, 70(6):066111, 2004. URL: https://doi.org/10.1103/PhysRevE.70.066111.
  6. Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015. URL: https://doi.org/10.1007/978-3-319-21275-3.
  7. Bhaskar DasGupta and Devendra Desai. On the complexity of Newman’s community finding approach for biological and social networks. Journal of Computer and System Sciences, 79(1):50-67, 2013. URL: https://doi.org/10.1016/J.JCSS.2012.04.003.
  8. Fabien de Montgolfier, Mauricio Soto, and Laurent Viennot. Asymptotic modularity of some graph classes. In Proceedings of the 22nd International Symposium on Algorithms and Computation (ISAAC '11), volume 7074 of Lecture Notes in Computer Science, pages 435-444. Springer, 2011. URL: https://doi.org/10.1007/978-3-642-25591-5_45.
  9. David Eppstein. Metric dimension parameterized by max leaf number. Journal of Graph Algorithms and Applications, 19(1):313-323, 2015. URL: https://doi.org/10.7155/JGAA.00360.
  10. Michael R. Fellows, Daniel Lokshtanov, Neeldhara Misra, Matthias Mnich, Frances A. Rosamond, and Saket Saurabh. The complexity ecology of parameters: An illustration using bounded max leaf number. Theory of Computing Systems, 45(4):822-848, 2009. URL: https://doi.org/10.1007/S00224-009-9167-9.
  11. Erez Hartuv and Ron Shamir. A clustering algorithm based on graph connectivity. Information Processing Letters, 76(4-6):175-181, 2000. URL: https://doi.org/10.1016/S0020-0190(00)00142-3.
  12. Falk Hüffner, Christian Komusiewicz, Adrian Liebtrau, and Rolf Niedermeier. Partitioning biological networks into highly connected clusters with maximum edge coverage. IEEE ACM Transactions on Computational Biology and Bioinformatics, 11(3):455-467, 2014. URL: https://doi.org/10.1109/TCBB.2013.177.
  13. Klaus Jansen, Stefan Kratsch, Dániel Marx, and Ildikó Schlotter. Bin packing with fixed number of bins revisited. Journal of Computer and System Sciences, 79(1):39-49, 2013. URL: https://doi.org/10.1016/J.JCSS.2012.04.004.
  14. Colin McDiarmid and Fiona Skerman. Modularity in random regular graphs and lattices. Electronic Notes in Discrete Mathematics, 43:431-437, 2013. URL: https://doi.org/10.1016/j.endm.2013.07.063.
  15. Colin McDiarmid and Fiona Skerman. Modularity of regular and treelike graphs. Journal of Complex Networks, 6(4):596-619, 2018. URL: https://doi.org/10.1093/comnet/cnx046.
  16. Kitty Meeks and Fiona Skerman. The parameterised complexity of computing the maximum modularity of a graph. Algorithmica, 82(8):2174-2199, 2020. URL: https://doi.org/10.1007/s00453-019-00649-7.
  17. M. E. J. Newman and M. Girvan. Finding and evaluating community structure in networks. Physical Review E, 69:026113, February 2004. URL: https://doi.org/10.1103/PhysRevE.69.026113.
  18. Mark Newman. Networks. Oxford university press, 2018. Google Scholar
  19. Ron Shamir, Roded Sharan, and Dekel Tsur. Cluster graph modification problems. Discrete Applied Mathematics, 144(1-2):173-182, 2004. URL: https://doi.org/10.1016/j.dam.2004.01.007.
  20. Fiona Skerman. Modularity of networks. PhD thesis, University of Oxford, 2015. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail