Subset Feedback Vertex Set in Tournaments as Fast as Without the Subset

Authors Satyabrata Jana , Lawqueen Kanesh , Madhumita Kundu , Saket Saurabh



PDF
Thumbnail PDF

File

LIPIcs.IPEC.2024.17.pdf
  • Filesize: 0.92 MB
  • 17 pages

Document Identifiers

Author Details

Satyabrata Jana
  • University of Warwick, Coventry, UK
Lawqueen Kanesh
  • Indian Institute of Technology, Jodhpur, India
Madhumita Kundu
  • University of Bergen, Norway
Saket Saurabh
  • The Institute of Mathematical Sciences, HBNI, Chennai, India
  • University of Bergen, Norway

Cite As Get BibTex

Satyabrata Jana, Lawqueen Kanesh, Madhumita Kundu, and Saket Saurabh. Subset Feedback Vertex Set in Tournaments as Fast as Without the Subset. In 19th International Symposium on Parameterized and Exact Computation (IPEC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 321, pp. 17:1-17:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024) https://doi.org/10.4230/LIPIcs.IPEC.2024.17

Abstract

In the Feedback Vertex Set in Tournaments (FVST) problem, we are given a tournament T and a positive integer k. The objective is to determine whether there exists a vertex set X ⊆ V(T) of size at most k such that T-X is a directed acyclic graph. This problem is known to be equivalent to the problem of hitting all directed triangles, thereby using the best-known algorithm for the 3-Hitting Set problem results in an algorithm for FVST with a running time of 2.076^k ⋅ n^{𝒪(1)} [Wahlström, Ph.D. Thesis]. Kumar and Lokshtanov [STACS 2016] designed a more efficient algorithm with a running time of 1.6181^k ⋅ n^{𝒪(1)}. A generalization of FVST, called Subset-FVST, includes an additional subset S ⊆ V(T) in the input. The goal for Subset-FVST is to find a vertex set X ⊆ V(T) of size at most k such that T-X contains no directed cycles that pass through any vertex in S. This generalized problem can also be represented as a 3-Hitting Set problem, leading to a running time of 2.076^k ⋅ n^{𝒪(1)}. Bai and Xiao [Theoretical Computer Science 2023] improved this and obtained an algorithm with running time 2^{k + o(k)} ⋅ n^{𝒪(1)}. In our work, we extend the algorithm of Kumar and Lokshtanov [STACS 2016] to solve Subset-FVST, obtaining an algorithm with a running time {𝒪}(1.6181^k + n^{{𝒪}(1)}), matching the running time for FVST.

Subject Classification

ACM Subject Classification
  • Theory of computation → Fixed parameter tractability
Keywords
  • Parameterized algorithms
  • Feedback vertex set
  • Tournaments
  • Fixed parameter tractable
  • Graph partitions

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Faisal N. Abu-Khzam. A kernelization algorithm for d-hitting set. J. Comput. Syst. Sci., 76(7):524-531, 2010. URL: https://doi.org/10.1016/J.JCSS.2009.09.002.
  2. Tian Bai and Mingyu Xiao. A parameterized algorithm for subset feedback vertex set in tournaments. Theor. Comput. Sci., 975:114139, 2023. URL: https://doi.org/10.1016/J.TCS.2023.114139.
  3. Stéphane Bessy, Marin Bougeret, Dimitrios M Thilikos, and Sebastian Wiederrecht. Kernelization for graph packing problems via rainbow matching. In Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 3654-3663. SIAM, 2023. URL: https://doi.org/10.1137/1.9781611977554.CH139.
  4. Jianer Chen, Yang Liu, Songjian Lu, Barry O'Sullivan, and Igor Razgon. A fixed-parameter algorithm for the directed feedback vertex set problem. J. ACM, 55(5):21:1-21:19, 2008. URL: https://doi.org/10.1145/1411509.1411511.
  5. Rajesh Hemant Chitnis, Marek Cygan, Mohammad Taghi Hajiaghayi, and Dániel Marx. Directed subset feedback vertex set is fixed-parameter tractable. ACM Trans. Algorithms, 11(4):28:1-28:28, 2015. URL: https://doi.org/10.1145/2700209.
  6. Marek Cygan, Marcin Pilipczuk, Michal Pilipczuk, and Jakub Onufry Wojtaszczyk. Subset feedback vertex set is fixed-parameter tractable. SIAM J. Discret. Math., 27(1):290-309, 2013. URL: https://doi.org/10.1137/110843071.
  7. Michael Dom, Jiong Guo, Falk Hüffner, Rolf Niedermeier, and Anke Truß. Fixed-parameter tractability results for feedback set problems in tournaments. J. Discrete Algorithms, 8(1):76-86, 2010. URL: https://doi.org/10.1016/J.JDA.2009.08.001.
  8. Guy Even, Joseph Naor, and Leonid Zosin. An 8-approximation algorithm for the subset feedback vertex set problem. SIAM J. Comput., 30(4):1231-1252, 2000. URL: https://doi.org/10.1137/S0097539798340047.
  9. Fedor V. Fomin, Tien-Nam Le, Daniel Lokshtanov, Saket Saurabh, Stéphan Thomassé, and Meirav Zehavi. Subquadratic kernels for implicit 3-hitting set and 3-set packing problems. ACM Trans. Algorithms, 15(1):13:1-13:44, 2019. URL: https://doi.org/10.1145/3293466.
  10. Fedor V Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Kernelization: theory of parameterized preprocessing. Cambridge University Press, 2019. Google Scholar
  11. Jiong Guo and Rolf Niedermeier. Invitation to data reduction and problem kernelization. SIGACT News, 38(1):31-45, 2007. URL: https://doi.org/10.1145/1233481.1233493.
  12. Sushmita Gupta, Sounak Modak, Saket Saurabh, and Sanjay Seetharaman. Quick-sort style approximation algorithms for generalizations of feedback vertex set in tournaments. In José A. Soto and Andreas Wiese, editors, LATIN 2024: Theoretical Informatics - 16th Latin American Symposium, Puerto Varas, Chile, March 18-22, 2024, Proceedings, Part I, volume 14578 of Lecture Notes in Computer Science, pages 225-240. Springer, 2024. URL: https://doi.org/10.1007/978-3-031-55598-5_15.
  13. Eva-Maria C. Hols and Stefan Kratsch. A randomized polynomial kernel for subset feedback vertex set. Theory Comput. Syst., 62(1):63-92, 2018. URL: https://doi.org/10.1007/S00224-017-9805-6.
  14. Yoichi Iwata and Yusuke Kobayashi. Improved analysis of highest-degree branching for feedback vertex set. Algorithmica, 83(8):2503-2520, 2021. URL: https://doi.org/10.1007/S00453-021-00815-W.
  15. Yoichi Iwata, Magnus Wahlström, and Yuichi Yoshida. Half-integrality, lp-branching, and FPT algorithms. SIAM J. Comput., 45(4):1377-1411, 2016. URL: https://doi.org/10.1137/140962838.
  16. Yoichi Iwata, Yutaro Yamaguchi, and Yuichi Yoshida. 0/1/all csps, half-integral a-path packing, and linear-time FPT algorithms. In Mikkel Thorup, editor, 59th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018, Paris, France, October 7-9, 2018, pages 462-473. IEEE Computer Society, 2018. URL: https://doi.org/10.1109/FOCS.2018.00051.
  17. Satyabrata Jana, Daniel Lokshtanov, Soumen Mandal, Ashutosh Rai, and Saket Saurabh. Parameterized approximation scheme for feedback vertex set. In Jérôme Leroux, Sylvain Lombardy, and David Peleg, editors, 48th International Symposium on Mathematical Foundations of Computer Science, MFCS 2023, August 28 to September 1, 2023, Bordeaux, France, volume 272 of LIPIcs, pages 56:1-56:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPICS.MFCS.2023.56.
  18. Richard M. Karp. Reducibility among combinatorial problems. In Raymond E. Miller and James W. Thatcher, editors, Proceedings of a symposium on the Complexity of Computer Computations, held March 20-22, 1972, at the IBM Thomas J. Watson Research Center, Yorktown Heights, New York, USA, The IBM Research Symposia Series, pages 85-103. Plenum Press, New York, 1972. URL: https://doi.org/10.1007/978-1-4684-2001-2_9.
  19. Mithilesh Kumar and Daniel Lokshtanov. Faster exact and parameterized algorithm for feedback vertex set in tournaments. In Nicolas Ollinger and Heribert Vollmer, editors, 33rd Symposium on Theoretical Aspects of Computer Science, STACS 2016, February 17-20, 2016, Orléans, France, volume 47 of LIPIcs, pages 49:1-49:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. URL: https://doi.org/10.4230/LIPICS.STACS.2016.49.
  20. Jason Li and Jesper Nederlof. Detecting feedback vertex sets of size k in O⋆ (2.7k) time. ACM Trans. Algorithms, 18(4):34:1-34:26, 2022. URL: https://doi.org/10.1145/3504027.
  21. Rolf Niedermeier and Peter Rossmanith. An efficient fixed-parameter algorithm for 3-hitting set. Journal of Discrete Algorithms, 1(1):89-102, 2003. URL: https://doi.org/10.1016/S1570-8667(03)00009-1.
  22. Geevarghese Philip, Varun Rajan, Saket Saurabh, and Prafullkumar Tale. Subset feedback vertex set in chordal and split graphs. Algorithmica, 81(9):3586-3629, 2019. URL: https://doi.org/10.1007/S00453-019-00590-9.
  23. Magnus Wahlström. Algorithms, measures and upper bounds for satisfiability and related problems. PhD thesis, Linköping University, Sweden, 2007. URL: https://nbn-resolving.org/urn:nbn:se:liu:diva-8714.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail