Parameterized Shortest Path Reconfiguration

Authors Nicolas Bousquet , Kshitij Gajjar, Abhiruk Lahiri , Amer E. Mouawad



PDF
Thumbnail PDF

File

LIPIcs.IPEC.2024.23.pdf
  • Filesize: 0.89 MB
  • 14 pages

Document Identifiers

Author Details

Nicolas Bousquet
  • Univ. Lyon, LIRIS, CNRS, Université Claude Bernard Lyon 1, Villeurbanne, France
Kshitij Gajjar
  • Centre for Security, Theory & Algorithmic Research (CSTAR), International Institute of Information Technology, Hyderabad (IIIT-H), India
Abhiruk Lahiri
  • Department of Computer Science, Heinrich Heine University, Düsseldorf, Germany
Amer E. Mouawad
  • Department of Computer Science, American University of Beirut, Lebanon

Cite As Get BibTex

Nicolas Bousquet, Kshitij Gajjar, Abhiruk Lahiri, and Amer E. Mouawad. Parameterized Shortest Path Reconfiguration. In 19th International Symposium on Parameterized and Exact Computation (IPEC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 321, pp. 23:1-23:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024) https://doi.org/10.4230/LIPIcs.IPEC.2024.23

Abstract

An st-shortest path, or st-path for short, in a graph G is a shortest (induced) path from s to t in G. Two st-paths are said to be adjacent if they differ on exactly one vertex. A reconfiguration sequence between two st-paths P and Q is a sequence of adjacent st-paths starting from P and ending at Q. Deciding whether there exists a reconfiguration sequence between two given st-paths is known to be PSPACE-complete, even on restricted classes of graphs such as graphs of bounded bandwidth (hence pathwidth). On the positive side, and rather surprisingly, the problem is polynomial-time solvable on planar graphs. In this paper, we study the parameterized complexity of the Shortest Path Reconfiguration (SPR) problem. We show that SPR is W[1]-hard parameterized by k + 𝓁, even when restricted to graphs of bounded (constant) degeneracy; here k denotes the number of edges on an st-path, and 𝓁 denotes the length of a reconfiguration sequence from P to Q. We complement our hardness result by establishing the fixed-parameter tractability of SPR parameterized by 𝓁 and restricted to nowhere-dense classes of graphs. Additionally, we establish fixed-parameter tractability of SPR when parameterized by the treedepth, by the cluster-deletion number, or by the modular-width of the input graph.

Subject Classification

ACM Subject Classification
  • Theory of computation → Parameterized complexity and exact algorithms
Keywords
  • combinatorial reconfiguration
  • shortest path reconfiguration
  • parameterized complexity
  • structural parameters
  • treedepth
  • cluster deletion number
  • modular width

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. John Asplund, Kossi D. Edoh, Ruth Haas, Yulia Hristova, Beth Novick, and Brett Werner. Reconfiguration graphs of shortest paths. Discret. Math., 341(10):2938-2948, 2018. URL: https://doi.org/10.1016/J.DISC.2018.07.007.
  2. Valentin Bartier, Nicolas Bousquet, and Amer E. Mouawad. Galactic token sliding. J. Comput. Syst. Sci., 136:220-248, 2023. URL: https://doi.org/10.1016/J.JCSS.2023.03.008.
  3. Paul S. Bonsma. The complexity of rerouting shortest paths. Theor. Comput. Sci., 510:1-12, 2013. URL: https://doi.org/10.1016/j.tcs.2013.09.012.
  4. Paul S. Bonsma. Rerouting shortest paths in planar graphs. Discret. Appl. Math., 231:95-112, 2017. URL: https://doi.org/10.1016/j.dam.2016.05.024.
  5. Nicolas Bousquet, Felix Hommelsheim, Yusuke Kobayashi, Moritz Mühlenthaler, and Akira Suzuki. Feedback vertex set reconfiguration in planar graphs. Theor. Comput. Sci., 979:114188, 2023. URL: https://doi.org/10.1016/j.tcs.2023.114188.
  6. Nicolas Bousquet, Amer E. Mouawad, Naomi Nishimura, and Sebastian Siebertz. A survey on the parameterized complexity of the independent set and (connected) dominating set reconfiguration problems. CoRR, abs/2204.10526, 2022. URL: https://doi.org/10.48550/arXiv.2204.10526.
  7. Erik D. Demaine, David Eppstein, Adam Hesterberg, Kshitij Jain, Anna Lubiw, Ryuhei Uehara, and Yushi Uno. Reconfiguring undirected paths. In Algorithms and Data Structures - 16th International Symposium, WADS 2019, Edmonton, AB, Canada, August 5-7, 2019, Proceedings, pages 353-365, 2019. URL: https://doi.org/10.1007/978-3-030-24766-9_26.
  8. Naoki Domon, Akira Suzuki, Yuma Tamura, and Xiao Zhou. The shortest path reconfiguration problem based on relaxation of reconfiguration rules. In Ryuhei Uehara, Katsuhisa Yamanaka, and Hsu-Chun Yen, editors, WALCOM: Algorithms and Computation - 18th International Conference and Workshops on Algorithms and Computation, WALCOM 2024, Kanazawa, Japan, March 18-20, 2024, Proceedings, volume 14549 of Lecture Notes in Computer Science, pages 227-241. Springer, 2024. URL: https://doi.org/10.1007/978-981-97-0566-5_17.
  9. Kshitij Gajjar, Agastya Vibhuti Jha, Manish Kumar, and Abhiruk Lahiri. Reconfiguring shortest paths in graphs. In Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI 2022, Virtual Event, February 22 - March 1, 2022, pages 9758-9766, 2022. URL: https://doi.org/10.1609/aaai.v36i9.21211.
  10. Sevag Gharibian and Jamie Sikora. Ground state connectivity of local hamiltonians. In Automata, Languages, and Programming - 42nd International Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part I, volume 9134 of Lecture Notes in Computer Science, pages 617-628. Springer, 2015. URL: https://doi.org/10.1007/978-3-662-47672-7_50.
  11. Martin Grohe, Stephan Kreutzer, and Sebastian Siebertz. Deciding first-order properties of nowhere dense graphs. In David B. Shmoys, editor, Symposium on Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages 89-98. ACM, 2014. URL: https://doi.org/10.1145/2591796.2591851.
  12. Siddharth Gupta, Guy Sa'ar, and Meirav Zehavi. The parameterized complexity of motion planning for snake-like robots. J. Artif. Intell. Res., 69:191-229, 2020. URL: https://doi.org/10.1613/JAIR.1.11864.
  13. Takehiro Ito, Erik D. Demaine, Nicholas J. A. Harvey, Christos H. Papadimitriou, Martha Sideri, Ryuhei Uehara, and Yushi Uno. On the complexity of reconfiguration problems. Theor. Comput. Sci., 412(12-14):1054-1065, 2011. URL: https://doi.org/10.1016/j.tcs.2010.12.005.
  14. Takehiro Ito, Marcin Kaminski, and Erik D. Demaine. Reconfiguration of list edge-colorings in a graph. Discret. Appl. Math., 160(15):2199-2207, 2012. URL: https://doi.org/10.1016/j.dam.2012.05.014.
  15. Anna Lubiw and Vinayak Pathak. Flip distance between two triangulations of a point set is NP-complete. Comput. Geom., 49:17-23, 2015. URL: https://doi.org/10.1016/j.comgeo.2014.11.001.
  16. Naomi Nishimura. Introduction to reconfiguration. Algorithms, 11(4):52, 2018. URL: https://doi.org/10.3390/a11040052.
  17. Krzysztof Pietrzak. On the parameterized complexity of the fixed alphabet shortest common supersequence and longest common subsequence problems. Journal of Computer and System Sciences, 67(4):757-771, 2003. URL: https://doi.org/10.1016/S0022-0000(03)00078-3.
  18. Jan van den Heuvel. The complexity of change. In Simon R. Blackburn, Stefanie Gerke, and Mark Wildon, editors, Surveys in Combinatorics 2013, volume 409 of London Mathematical Society Lecture Note Series, pages 127-160. Cambridge University Press, 2013. URL: https://doi.org/10.1017/CBO9781139506748.005.
  19. Marcin Wrochna. Reconfiguration in bounded bandwidth and tree-depth. J. Comput. Syst. Sci., 93:1-10, 2018. URL: https://doi.org/10.1016/J.JCSS.2017.11.003.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail