Matching (Multi)Cut: Algorithms, Complexity, and Enumeration

Authors Guilherme C. M. Gomes , Emanuel Juliano , Gabriel Martins , Vinicius F. dos Santos



PDF
Thumbnail PDF

File

LIPIcs.IPEC.2024.25.pdf
  • Filesize: 0.81 MB
  • 15 pages

Document Identifiers

Author Details

Guilherme C. M. Gomes
  • Departamento de Ciência da Computação, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
  • CNRS/LIRMM, Montpellier, France
Emanuel Juliano
  • Departamento de Ciência da Computação, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
Gabriel Martins
  • Departamento de Ciência da Computação, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
Vinicius F. dos Santos
  • Departamento de Ciência da Computação, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil

Cite As Get BibTex

Guilherme C. M. Gomes, Emanuel Juliano, Gabriel Martins, and Vinicius F. dos Santos. Matching (Multi)Cut: Algorithms, Complexity, and Enumeration. In 19th International Symposium on Parameterized and Exact Computation (IPEC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 321, pp. 25:1-25:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024) https://doi.org/10.4230/LIPIcs.IPEC.2024.25

Abstract

A matching cut of a graph is a partition of its vertex set in two such that no vertex has more than one neighbor across the cut. The Matching Cut problem asks if a graph has a matching cut. This problem, and its generalization d-cut, has drawn considerable attention of the algorithms and complexity community in the last decade, becoming a canonical example for parameterized enumeration algorithms and kernelization. In this paper, we introduce and study a generalization of Matching Cut, which we have named Matching Multicut: can we partition the vertex set of a graph in at least 𝓁 parts such that no vertex has more than one neighbor outside its part? We investigate this question in several settings. We start by showing that, contrary to Matching Cut, it is NP-hard on cubic graphs but that, when 𝓁 is a parameter, it admits a quasi-linear kernel. We also show an 𝒪(𝓁^{n/2}) time exact exponential algorithm for general graphs and a 2^{𝒪(tlog t)}n^{𝒪(1)} time algorithm for graphs of treewidth at most t. We then turn our attention to parameterized enumeration aspects of matching multicuts. First, we generalize the quadratic kernel of Golovach et. al for Enum Matching Cut parameterized by vertex cover, then use it to design a quadratic kernel for Enum Matching (Multi)cut parameterized by vertex-deletion distance to co-cluster. Our final contributions are on the vertex-deletion distance to cluster parameterization, where we show an FPT-delay algorithm for Enum Matching Multicut but that no polynomial kernel exists unless NP ⊆ coNP/poly; we highlight that we have no such lower bound for Enum Matching Cut and consider it our main open question.

Subject Classification

ACM Subject Classification
  • Theory of computation → Parameterized complexity and exact algorithms
Keywords
  • Matching Cut
  • Matching Multicut
  • Enumeration
  • Parameterized Complexity
  • Exact exponential algorithms

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Júlio Araújo, Nathann Cohen, Frédéric Giroire, and Frédéric Havet. Good edge-labelling of graphs. Discrete Applied Mathematics, 160(18):2502-2513, 2012. URL: https://doi.org/10.1016/J.DAM.2011.07.021.
  2. Rafael T Araújo, Rudini M Sampaio, Vinícius F dos Santos, and Jayme L Szwarcfiter. The convexity of induced paths of order three and applications: complexity aspects. Discrete Applied Mathematics, 237:33-42, 2018. URL: https://doi.org/10.1016/J.DAM.2017.11.007.
  3. N. R. Aravind, Subrahmanyam Kalyanasundaram, and Anjeneya Swami Kare. On structural parameterizations of the matching cut problem. In Proc. of the 11th International Conference on Combinatorial Optimization and Applications (COCOA), volume 10628 of LNCS, pages 475-482, 2017. URL: https://doi.org/10.1007/978-3-319-71147-8_34.
  4. N. R. Aravind and Roopam Saxena. An FPT algorithm for matching cut and d-cut. In Paola Flocchini and Lucia Moura, editors, Combinatorial Algorithms, pages 531-543, Cham, 2021. Springer International Publishing. URL: https://doi.org/10.1007/978-3-030-79987-8_37.
  5. Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. Cross-composition: A new technique for kernelization lower bounds. In Proc. of the 28th International Symposium on Theoretical Aspects of Computer Science (STACS), volume 9 of LIPIcs, pages 165-176, 2011. URL: https://doi.org/10.4230/LIPICS.STACS.2011.165.
  6. J.A. Bondy and U.S.R Murty. Graph Theory. Springer Publishing Company, Incorporated, 1st edition, 2008. Google Scholar
  7. Édouard Bonnet, Dibyayan Chakraborty, and Julien Duron. Cutting barnette graphs perfectly is hard. In Daniël Paulusma and Bernard Ries, editors, Graph-Theoretic Concepts in Computer Science, pages 116-129, Cham, 2023. Springer Nature Switzerland. URL: https://doi.org/10.1007/978-3-031-43380-1_9.
  8. Paul Bonsma. The complexity of the matching-cut problem for planar graphs and other graph classes. Journal of Graph Theory, 62(2):109-126, 2009. URL: https://doi.org/10.1002/JGT.20390.
  9. Andreas Brandstädt and Heinz-Jürgen Voss. Short disjoint cycles in graphs with degree constraints. Discrete Applied Mathematics, 64(3):197-205, 1996. URL: https://doi.org/10.1016/0166-218X(94)00133-X.
  10. Carmen C. Centeno, Simone Dantas, Mitre Costa Dourado, Dieter Rautenbach, and Jayme Luiz Szwarcfiter. Convex partitions of graphs induced by paths of order three. Discrete Mathematics & Theoretical Computer Science, 12(Graph and Algorithms), 2010. URL: https://doi.org/10.46298/DMTCS.502.
  11. Carmen C. Centeno, Mitre C. Dourado, Lucia Draque Penso, Dieter Rautenbach, and Jayme L. Szwarcfiter. Irreversible conversion of graphs. Theoretical Computer Science, 412(29):3693-3700, 2011. URL: https://doi.org/10.1016/J.TCS.2011.03.029.
  12. Chi-Yeh Chen, Sun-Yuan Hsieh, Hoàng-Oanh Le, Van Bang Le, and Sheng-Lung Peng. Matching cut in graphs with large minimum degree. Algorithmica, 83:1238-1255, 2021. URL: https://doi.org/10.1007/S00453-020-00782-8.
  13. Vasek Chvátal. Recognizing decomposable graphs. Journal of Graph Theory, 8(1):51-53, 1984. URL: https://doi.org/10.1002/JGT.3190080106.
  14. Nadia Creignou, Arne Meier, Julian-Steffen Müller, Johannes Schmidt, and Heribert Vollmer. Paradigms for parameterized enumeration. Theory of Computing Systems, 60(4):737-758, May 2017. URL: https://doi.org/10.1007/s00224-016-9702-4.
  15. Marek Cygan, Fedor V Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized algorithms, volume 3. Springer, 2015. URL: https://doi.org/10.1007/978-3-319-21275-3.
  16. Marek Cygan, Paweł Komosa, Daniel Lokshtanov, Marcin Pilipczuk, Michał Pilipczuk, Saket Saurabh, and Magnus Wahlström. Randomized contractions meet lean decompositions. ACM Trans. Algorithms, 17(1), December 2021. URL: https://doi.org/10.1145/3426738.
  17. Mitre C Dourado, Fábio Protti, and Jayme L Szwarcfiter. Complexity results related to monophonic convexity. Discrete Applied Mathematics, 158(12):1268-1274, 2010. URL: https://doi.org/10.1016/J.DAM.2009.11.016.
  18. Rodney G Downey and Michael R Fellows. Fundamentals of parameterized complexity, volume 4. Springer, 2013. URL: https://doi.org/10.1007/978-1-4471-5559-1.
  19. P. Erdös and L. Pósa. On independent circuits contained in a graph. Canadian Journal of Mathematics, 17:347-352, 1965. URL: https://doi.org/10.4153/CJM-1965-035-8.
  20. Arthur M Farley and Andrzej Proskurowski. Networks immune to isolated line failures. Networks, 12(4):393-403, 1982. URL: https://doi.org/10.1002/NET.3230120404.
  21. Carl Feghali. A note on matching-cut in P_t-free graphs. Information Processing Letters, 179:106294, 2023. URL: https://doi.org/10.1016/J.IPL.2022.106294.
  22. Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms. Springer-Verlag, Berlin, Heidelberg, 1st edition, 2010. Google Scholar
  23. Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Kernelization: Theory of Parameterized Preprocessing. Cambridge University Press, 2019. Google Scholar
  24. M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified np-complete graph problems. Theoretical Computer Science, 1(3):237-267, 1976. URL: https://doi.org/10.1016/0304-3975(76)90059-1.
  25. Petr A. Golovach, Christian Komusiewicz, Dieter Kratsch, et al. Refined notions of parameterized enumeration kernels with applications to matching cut enumeration. Journal of Computer and System Sciences, 123:76-102, 2022. URL: https://doi.org/10.1016/J.JCSS.2021.07.005.
  26. Guilherme C. M. Gomes and Ignasi Sau. Finding cuts of bounded degree: Complexity, FPT and exact algorithms, and kernelization. Algorithmica, 83(6):1677-1706, June 2021. URL: https://doi.org/10.1007/s00453-021-00798-8.
  27. Lucía M. González, Luciano N. Grippo, Martín D. Safe, and Vinicius F. dos Santos. Covering graphs with convex sets and partitioning graphs into convex sets. Information Processing Letters, 158:105944, 2020. URL: https://doi.org/10.1016/J.IPL.2020.105944.
  28. Ron L. Graham. On primitive graphs and optimal vertex assignments. Annals of the New York academy of sciences, 175(1):170-186, 1970. Google Scholar
  29. Frank Harary and Juhani Nieminen. Convexity in graphs. Journal of Differential Geometry, 16(2):185-190, 1981. Google Scholar
  30. Pinar Heggernes and Jan Arne Telle. Partitioning graphs into generalized dominating sets. Nord. J. Comput., 5(2):128-142, 1998. Google Scholar
  31. Christian Komusiewicz, Dieter Kratsch, and Van Bang Le. Matching cut: Kernelization, single-exponential time FPT, and exact exponential algorithms. Discrete Applied Mathematics, 283:44-58, 2020. URL: https://doi.org/10.1016/j.dam.2019.12.010.
  32. Van Bang Le, Felicia Lucke, Daniël Paulusma, and Bernard Ries. Maximizing matching cuts. arXiv preprint arXiv:2312.12960, 2023. URL: https://doi.org/10.48550/arXiv.2312.12960.
  33. László Lovász and Michael D. Plummer. Matching theory, volume 367. American Mathematical Soc., 2009. Google Scholar
  34. Cláudio L. Lucchesi and U.S.R. Murty. Perfect Matchings: A Theory of Matching Covered Graphs. Algorithms and Computation in Mathematics. Springer Nature Switzerland, Imprint: Springer, 2024. Google Scholar
  35. Felicia Lucke, Ali Momeni, Daniël Paulusma, and Siani Smith. Finding d-cuts in graphs of bounded diameter, graphs of bounded radius and h-free graphs. arXiv preprint arXiv:2404.11389, 2024. URL: https://doi.org/10.48550/arXiv.2404.11389.
  36. Felicia Lucke, Daniël Paulusma, and Bernard Ries. On the complexity of matching cut for graphs of bounded radius and H-free graphs. Theoretical Computer Science, 936:33-42, 2022. URL: https://doi.org/10.1016/J.TCS.2022.09.014.
  37. Felicia Lucke, Daniël Paulusma, and Bernard Ries. Dichotomies for maximum matching cut: h-freeness, bounded diameter, bounded radius. arXiv preprint arXiv:2304.01099, 2023. URL: https://doi.org/10.48550/arXiv.2304.01099.
  38. Felicia Lucke, Daniël Paulusma, and Bernard Ries. Finding matching cuts in H-free graphs. Algorithmica, 85(10):3290-3322, 2023. URL: https://doi.org/10.1007/S00453-023-01137-9.
  39. Dáaniel Marx, Barry O’sullivan, and Igor Razgon. Finding small separators in linear time via treewidth reduction. ACM Trans. Algorithms, 9(4), October 2013. URL: https://doi.org/10.1145/2500119.
  40. Augustine M Moshi. Matching cutsets in graphs. Journal of Graph Theory, 13(5):527-536, 1989. URL: https://doi.org/10.1002/JGT.3190130502.
  41. Maurizio Patrignani and Maurizio Pizzonia. The complexity of the matching-cut problem. In Graph-Theoretic Concepts in Computer Science: 27th InternationalWorkshop, WG 2001 Boltenhagen, Germany, June 14-16, 2001 Proceedings 27, pages 284-295. Springer, 2001. URL: https://doi.org/10.1007/3-540-45477-2_26.
  42. Bert Randerath et al. On stable cutsets in line graphs. Theoretical Computer Science, 301(1-3):463-475, 2003. URL: https://doi.org/10.1016/S0304-3975(03)00048-3.
  43. Miklós Simonovits. A new proof and generalizations of a theorem of Erdős and Pósa on graphs without k+ 1 independent circuits. Acta Mathematica Hungarica, 18(1-2):191-206, 1967. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail