The PACE 2024 Parameterized Algorithms and Computational Experiments Challenge: One-Sided Crossing Minimization

Authors Philipp Kindermann , Fabian Klute , Soeren Terziadis



PDF
Thumbnail PDF

File

LIPIcs.IPEC.2024.26.pdf
  • Filesize: 1.23 MB
  • 20 pages

Document Identifiers

Author Details

Philipp Kindermann
  • Trier University, Germany
Fabian Klute
  • Polytechnic University of Catalonia, Barcelona, Spain
Soeren Terziadis
  • Eindhoven University of Technology, The Netherlands

Acknowledgements

The prize money (€4000) was generously provided by Networks, an NWO Gravitation project of the University of Amsterdam, Eindhoven University of Technology, Leiden University and the Center for Mathematics and Computer Science (CWI). We are grateful to the whole optil.io team, especially to Jan Badura for the fruitful collaboration and for hosting the competition at the optil.io online judge system. We also thank Markus Wallinger, who made his exact solver available to the organizers prior to the competition for internal evaluations [Wallinger, 2024].

Cite As Get BibTex

Philipp Kindermann, Fabian Klute, and Soeren Terziadis. The PACE 2024 Parameterized Algorithms and Computational Experiments Challenge: One-Sided Crossing Minimization. In 19th International Symposium on Parameterized and Exact Computation (IPEC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 321, pp. 26:1-26:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024) https://doi.org/10.4230/LIPIcs.IPEC.2024.26

Abstract

This article is a report by the challenge organizers on the 9th Parameterized Algorithms and Computational Experiments Challenge (PACE 2024). As was common in previous iterations of the competition, this year’s iteration implemented an exact and heuristic track for a parameterized problem that has gained attention in the theory community. This year’s challenge is about the One-Sided Crossing Minimization Problem (OSCM). In the exact track, the competition participants were asked to develop an exact algorithm that can solve as many instances as possible from a benchmark set of 100 instances – with a time limit of 30 minutes per instance. In the heuristic track, the task must be accomplished within 5 minutes, however, the result in this track is not required to be optimal. New this year is the parameterized track, which has the same rules as the exact track, but instances are guaranteed to have small cutwidth. As in previous iterations, the organizers handed out awards to the best solutions in all tracks and to the best student submissions.

Subject Classification

ACM Subject Classification
  • Theory of computation → Parameterized complexity and exact algorithms
  • Theory of computation → Graph algorithms analysis
  • Mathematics of computing → Graph algorithms
Keywords
  • One-Sided Crossing Minimization
  • Algorithm Engineering
  • FPT
  • Heuristics

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Ali Baharev, Hermann Schichl, Arnold Neumaier, and Tobias Achterberg. An exact method for the minimum feedback arc set problem. ACM J. Exp. Algorithmics, 26, April 2021. URL: https://doi.org/10.1145/3446429.
  2. Tomas Balyo, Marijn Heule, Markus Iser, Matti Järvisalo, and Martin Suda, editors. SAT Competition 2023: Solver, Benchmark and Proof Checker Descriptions. Uni. Helsinki, 2023. Google Scholar
  3. Max Bannach and Sebastian Berndt. PACE solver description: The PACE 2023 parameterized algorithms and computational experiments challenge: Twinwidth. In IPEC, volume 285 of LIPIcs, pages 35:1-35:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPIcs.IPEC.2023.35.
  4. Max Bannach, Florian Chudigiewitsch, Kim-Manuel Klein, and Marcel Wienöbst. PACE solver description: UzL exact solver for one-sided crossing minimization. In IPEC, volume 321 of LIPIcs, pages 28:1-28:4. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024. Google Scholar
  5. Édouard Bonnet and Florian Sikora. The PACE 2018 parameterized algorithms and computational experiments challenge: The third iteration. In IPEC, volume 115 of LIPIcs, pages 26:1-26:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. URL: https://doi.org/10.4230/LIPICS.IPEC.2018.26.
  6. Holger Dell, Thore Husfeldt, Bart M. P. Jansen, Petteri Kaski, Christian Komusiewicz, and Frances A. Rosamond. The first parameterized algorithms and computational experiments challenge. In IPEC, volume 63 of LIPIcs, pages 30:1-30:9. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. URL: https://doi.org/10.4230/LIPIcs.IPEC.2016.30.
  7. Holger Dell, Christian Komusiewicz, Nimrod Talmon, and Mathias Weller. The PACE 2017 parameterized algorithms and computational experiments challenge: The second iteration. In IPEC, volume 89 of LIPIcs, pages 30:1-30:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. URL: https://doi.org/10.4230/LIPIcs.IPEC.2017.30.
  8. Hristo N. Djidjev and Imrich Vrto. Crossing numbers and cutwidths. J. Graph Algorithms Appl., 7(3):245-251, 2003. URL: https://doi.org/10.7155/JGAA.00069.
  9. Alexander Dobler. A note on the complexity of one-sided crossing minimization of trees, 2023. https://arxiv.org/abs/2306.15339, URL: https://doi.org/10.48550/arXiv.2306.15339.
  10. Alexander Dobler. PACE solver description: CRGone. In IPEC, volume 321 of LIPIcs, pages 29:1-29:4. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024. Google Scholar
  11. Vida Dujmovic and Sue Whitesides. An efficient fixed parameter tractable algorithm for 1-sided crossing minimization. Algorithmica, 40(1):15-31, 2004. URL: https://doi.org/10.1007/s00453-004-1093-2.
  12. Vida Dujmović, Henning Fernau, and Michael Kaufmann. Fixed parameter algorithms for one-sided crossing minimization revisited. J. Discr. Alg., 6(2):313-323, 2008. URL: https://doi.org/10.1016/j.jda.2006.12.008.
  13. M. Ayaz Dzulfikar, Johannes Klaus Fichte, and Markus Hecher. The PACE 2019 parameterized algorithms and computational experiments challenge: The fourth iteration (invited paper). In IPEC, volume 148 of LIPIcs, pages 25:1-25:23. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. URL: https://doi.org/10.4230/LIPIcs.IPEC.2019.25.
  14. Peter Eades and Sue Whitesides. Drawing graphs in two layers. Theoret. Comp. Sci., 131(2):361-374, 1994. URL: https://doi.org/10.1016/0304-3975(94)90179-1.
  15. Peter Eades and Nicholas C. Wormald. Edge crossings in drawings of bipartite graphs. Algorithmica, 11(4):379-403, 1994. URL: https://doi.org/10.1007/bf01187020.
  16. Martin J. Geiger. PACE 2024 solver description: Martin_J_Geiger. In IPEC, volume 321 of LIPIcs, pages 32:1-32:4. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024. Google Scholar
  17. Archontia C. Giannopoulou, Michal Pilipczuk, Jean-Florent Raymond, Dimitrios M. Thilikos, and Marcin Wrochna. Cutwidth: Obstructions and algorithmic aspects. Algorithmica, 81(2):557-588, 2019. URL: https://doi.org/10.1007/S00453-018-0424-7.
  18. Ernestine Großmann, Tobias Heuer, Christian Schulz, and Darren Strash. The PACE 2022 parameterized algorithms and computational experiments challenge: Directed feedback vertex set. In IPEC, volume 249 of LIPIcs, pages 26:1-26:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPIcs.IPEC.2022.26.
  19. Martin Grötschel, Michael Jünger, and Gerhard Reinelt. A cutting plane algorithm for the linear ordering problem. Oper. Res., 32(6):1195-1220, 1984. URL: https://doi.org/10.1287/OPRE.32.6.1195.
  20. Martin Grötschel, Michael Jünger, and Gerhard Reinelt. Facets of the linear ordering polytope. Math. Program., 33(1):43-60, 1985. URL: https://doi.org/10.1007/BF01582010.
  21. Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring network structure, dynamics, and function using NetworkX. In SciPy, pages 11-15, 2008. Google Scholar
  22. Patrick Healy and Nikola S. Nikolov. Hierarchical drawing algorithms. In Handbook on Graph Drawing and Visualization, pages 409-453. Chapman and Hall/CRC, 2013. Google Scholar
  23. Michael Jünger and Petra Mutzel. 2-layer straightline crossing minimization: Performance of exact and heuristic algorithms. In J. Graph Algorithms Appl., volume 1, pages 1-25. World Scientific, 2002. URL: https://doi.org/10.1142/9789812777638_0001.
  24. Michael Jünger, Paul Jünger, Petra Mutzel, and Gerhard Reinelt. PACE solver description: Exact solution of the one-sided crossing minimization problem by the MPPEG team. In IPEC, volume 321 of LIPIcs, pages 27:1-27:4. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024. Google Scholar
  25. Leon Kellerhals, Tomohiro Koana, André Nichterlein, and Philipp Zschoche. The PACE 2021 parameterized algorithms and computational experiments challenge: Cluster editing. In IPEC, volume 214 of LIPIcs, pages 26:1-26:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPIcs.IPEC.2021.26.
  26. Yasuaki Kobayashi and Hisao Tamaki. A fast and simple subexponential fixed parameter algorithm for one-sided crossing minimization. Algorithmica, 72(3):778-790, 2015. URL: https://doi.org/10.1007/s00453-014-9872-x.
  27. Ragnar Groot Koerkamp and Mees de Vries. PACE solver description: OCMu64, a solver for one-sided crossing minimization. In IPEC, volume 321 of LIPIcs, pages 35:1-35:4. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024. Google Scholar
  28. Lukasz Kowalik, Marcin Mucha, Wojciech Nadara, Marcin Pilipczuk, Manuel Sorge, and Piotr Wygocki. The PACE 2020 parameterized algorithms and computational experiments challenge: Treedepth. In IPEC, volume 180 of LIPIcs, pages 37:1-37:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. URL: https://doi.org/10.4230/LIPIcs.IPEC.2020.37.
  29. Kenneth Langedal, Matthias Bentert, Thorgal Blanco, and Pål Grønås Drange. PACE solver description: LUNCH — linear uncrossing heuristics. In IPEC, volume 321 of LIPIcs, pages 34:1-34:4. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024. Google Scholar
  30. E. Lawler. A comment on minimum feedback arc sets. IEEE Trans. Circuit Theory, 11(2):296-297, 1964. URL: https://doi.org/10.1109/TCT.1964.1082291.
  31. Xiao Yu Li and Matthias F. Stallmann. New bounds on the barycenter heuristic for bipartite drawing. Inform. Proc. Let., 82:293-298, 2002. URL: https://doi.org/10.1016/S0020-0190(01)00297-6.
  32. Xavier Muñoz, Walter Unger, and Imrich Vrto. One sided crossing minimization is NP-hard for sparse graphs. In GD, volume 2265 of LNCS, pages 115-123. Springer, 2001. URL: https://doi.org/10.1007/3-540-45848-4_10.
  33. Networks project, 2017. URL: https://www.thenetworkcenter.nl.
  34. S. Park and S.B. Akers. An efficient method for finding a minimal feedback arc set in directed graphs. In ISCAS, volume 4, pages 1863-1866, 1992. URL: https://doi.org/10.1109/ISCAS.1992.230449.
  35. Martí Rafael and Reinelt Gerhard. Exact and heuristic methods in combinatorial optimization. Appl. Math. Sci., 2022. URL: https://doi.org/10.1007/978-3-662-64877-3.
  36. Carlos Segura, Lázaro Lugo, Gara Miranda, and Edison David Serrano Cárdenas. PACE solver description: CIMAT_Team. In IPEC, volume 321 of LIPIcs, pages 31:1-31:4. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024. Google Scholar
  37. Kozo Sugiyama, Shojiro Tagawa, and Mitsuhiko Toda. Methods for visual understanding of hierarchical system structures. IEEE Trans. Syst., Man, and Cybernetics, 11(2):109-125, 1981. URL: https://doi.org/10.1109/tsmc.1981.4308636.
  38. Markus Wallinger. Exploring Graph-based Concepts for Balanced Information Density in Data Visualizations. PhD thesis, TU Wien, 2024. URL: https://doi.org/10.34726/hss.2024.124826.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail