PACE Solver Description: Exact Solution of the One-Sided Crossing Minimization Problem by the MPPEG Team

Authors Michael Jünger , Paul J. Jünger , Petra Mutzel , Gerhard Reinelt



PDF
Thumbnail PDF

File

LIPIcs.IPEC.2024.27.pdf
  • Filesize: 0.57 MB
  • 4 pages

Document Identifiers

Author Details

Michael Jünger
  • University of Cologne, Germany
Paul J. Jünger
  • University of Bonn, Germany
Petra Mutzel
  • University of Bonn, Germany
Gerhard Reinelt
  • Heidelberg University, Germany

Acknowledgements

The authors gratefully acknowledge the granted access to the Marvin cluster hosted by the University of Bonn.

Cite As Get BibTex

Michael Jünger, Paul J. Jünger, Petra Mutzel, and Gerhard Reinelt. PACE Solver Description: Exact Solution of the One-Sided Crossing Minimization Problem by the MPPEG Team. In 19th International Symposium on Parameterized and Exact Computation (IPEC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 321, pp. 27:1-27:4, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024) https://doi.org/10.4230/LIPIcs.IPEC.2024.27

Abstract

This is a short description of our solver oscm submitted by our team MPPEG to the PACE 2024 challenge both for the exact track and the parameterized track, available at https://github.com/pauljngr/PACE2024 [Jünger et al., 2024] and https://doi.org/10.5281/zenodo.11546972 [Jünger et al., 2024].

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Combinatorial optimization
  • Theory of computation → Mathematical optimization
  • Theory of computation → Parameterized complexity and exact algorithms
  • Human-centered computing → Graph drawings
Keywords
  • Combinatorial Optimization
  • Linear Ordering
  • Crossing Minimization
  • Branch and Cut
  • Algorithm Engineering

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Vida Dujmović and Sue Whitesides. An efficient fixed parameter tractable algorithm for 1-sided crossing minimization. Algorithmica, 40(1):15-31, 2004. URL: https://doi.org/10.1007/S00453-004-1093-2.
  2. Peter Eades and Nicholas C. Wormald. Edge crossings in drawings of bipartite graphs. Algorithmica, 11(4):379-403, 1994. URL: https://doi.org/10.1007/BF01187020.
  3. John Forrest et al. coin-or/Cbc: Release 2.10.7, 2022. URL: https://zenodo.org/records/5904374.
  4. Martin Grötschel, Michael Jünger, and Gerhard Reinelt. A cutting plane algorithm for the linear ordering problem. Operations Research, 32(6):1195-1220, 1984. URL: https://doi.org/10.1287/opre.32.6.1195.
  5. Martin Grötschel, Michael Jünger, and Gerhard Reinelt. Facets of the linear ordering polytope. Mathematical Programming, 33(1):43-60, 1985. URL: https://doi.org/10.1007/BF01582010.
  6. Martin Grötschel, Michael Jünger, and Gerhard Reinelt. On the acyclic subgraph polytope. Mathematical Programming, 33(1):28-42, 1985. URL: https://doi.org/10.1007/BF01582009.
  7. Patrick Healy and Nikola S. Nikolov. Hierarchical drawing algorithms. In Roberto Tamassia, editor, Handbook of Graph Drawing and Visualization, Discrete Mathematics and Its Applications, pages 409-453. CRC Press, 2013. URL: https://api.semanticscholar.org/CorpusID:7736149.
  8. Michael Jünger, Paul J. Jünger, Petra Mutzel, and Gerhard Reinelt. PACE 2024 - MPPEG, June 2024. Software, version 1.2. (visited on 2024-11-28). URL: https://doi.org/10.5281/zenodo.11546972.
  9. Michael Jünger, Paul J. Jünger, Petra Mutzel, and Gerhard Reinelt. PACE2024, June 2024. Software, version 1.0. (visited on 2024-11-28). , URL: https://doi.org/10.4230/artifacts.22523. URL: https://github.com/pauljngr/PACE2024
    full metadata available at: https://doi.org/10.4230/artifacts.22523
  10. Michael Jünger and Petra Mutzel. 2-layer straightline crossing minimization: Performance of exact and heuristic algorithms. Journal of Graph Algorithms and Applications, 1(1):1-25, 1997. URL: https://doi.org/10.7155/jgaa.00001.
  11. R. Lougee-Heimer. The common optimization interface for operations research: Promoting open-source software in the operations research community. IBM Journal of Research and Development, 47(1):57-66, 2003. URL: https://doi.org/10.1147/rd.471.0057.
  12. Rafael Martí and Gerhard Reinelt. Exact and Heuristic Methods in Combinatorial Optimization - A Study on the Linear Ordering and the Maximum Diversity Problem. Applied Mathematical Sciences. Springer Berlin, Heidelberg, 2022. URL: https://doi.org/10.1007/978-3-662-64877-3.
  13. PACE 2024 Web Page. URL: https://pacechallenge.org/2024.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail