PACE Solver Description: CRGone

Author Alexander Dobler



PDF
Thumbnail PDF

File

LIPIcs.IPEC.2024.29.pdf
  • Filesize: 0.55 MB
  • 4 pages

Document Identifiers

Author Details

Alexander Dobler
  • TU Wien, Austria

Cite As Get BibTex

Alexander Dobler. PACE Solver Description: CRGone. In 19th International Symposium on Parameterized and Exact Computation (IPEC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 321, pp. 29:1-29:4, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024) https://doi.org/10.4230/LIPIcs.IPEC.2024.29

Abstract

We describe CRGone, our solver for the exact and parameterized track of the Pace Challenge 2024. It solves the problem of one-sided crossing minimization, is based on an integer linear programming (ILP) formulation with additional reduction rules, and is implemented in C++ using the ILP solver SCIP with Soplex.

Subject Classification

ACM Subject Classification
  • Theory of computation → Parameterized complexity and exact algorithms
  • Human-centered computing → Graph drawings
  • Mathematics of computing → Permutations and combinations
Keywords
  • Pace Challenge 2024
  • One-Layer Crossing Minimization
  • Exact Algorithm

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Suresh Bolusani, Mathieu Besançon, Ksenia Bestuzheva, Antonia Chmiela, João Dionísio, Tim Donkiewicz, Jasper van Doornmalen, Leon Eifler, Mohammed Ghannam, Ambros Gleixner, et al. The SCIP optimization suite 9.0, 2024. URL: https://arxiv.org/abs/2402.17702.
  2. Vida Dujmovic, Henning Fernau, and Michael Kaufmann. Fixed parameter algorithms for one-sided crossing minimization revisited. J. Discrete Algorithms, 6(2):313-323, 2008. URL: https://doi.org/10.1016/J.JDA.2006.12.008.
  3. Vida Dujmovic and Sue Whitesides. An efficient fixed parameter tractable algorithm for 1-sided crossing minimization. Algorithmica, 40(1):15-31, 2004. URL: https://doi.org/10.1007/S00453-004-1093-2.
  4. Peter Eades and Nicholas C. Wormald. Edge crossings in drawings of bipartite graphs. Algorithmica, 11(4):379-403, 1994. URL: https://doi.org/10.1007/BF01187020.
  5. Gerald Gamrath, Daniel Anderson, Ksenia Bestuzheva, Wei-Kun Chen, Leon Eifler, Maxime Gasse, Patrick Gemander, Ambros Gleixner, Leona Gottwald, Katrin Halbig, et al. The SCIP optimization suite 7.0, 2020. URL: https://opus4.kobv.de/opus4-zib/files/7802/scipopt-70.pdf.
  6. Michel Habib and Christophe Paul. A survey of the algorithmic aspects of modular decomposition. Comput. Sci. Rev., 4(1):41-59, 2010. URL: https://doi.org/10.1016/J.COSREV.2010.01.001.
  7. Michael Jünger and Petra Mutzel. Exact and heuristic algorithms for 2-layer straightline crossing minimization. In Franz-Josef Brandenburg, editor, Proc. Symposium on Graph Drawing and Network Visualizations (GD'95), volume 1027 of LNCS, pages 337-348. Springer, 1995. URL: https://doi.org/10.1007/BFB0021817.
  8. Yasuaki Kobayashi and Hisao Tamaki. A fast and simple subexponential fixed parameter algorithm for one-sided crossing minimization. Algorithmica, 72(3):778-790, 2015. URL: https://doi.org/10.1007/S00453-014-9872-X.
  9. Sungju Park and Sheldon B Akers. An efficient method for finding a minimal feedback arc set in directed graphs. In Proc. International Symposium on Circuits and Systems (ISCAS'92), volume 4, pages 1863-1866. IEEE, 1992. Google Scholar
  10. Hermann Stamm. On feedback problems in planar digraphs. In Rolf H. Möhring, editor, Proc. Graph-Theoretic Concepts in Computer Science (WG'90), volume 484 of LNCS, pages 79-89. Springer, 1990. URL: https://doi.org/10.1007/3-540-53832-1_33.
  11. Kozo Sugiyama, Shojiro Tagawa, and Mitsuhiko Toda. Methods for visual understanding of hierarchical system structures. IEEE Trans. Syst. Man Cybern., 11(2):109-125, 1981. URL: https://doi.org/10.1109/TSMC.1981.4308636.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail