Twin-Width Meets Feedback Edges and Vertex Integrity

Authors Jakub Balabán , Robert Ganian , Mathis Rocton



PDF
Thumbnail PDF

File

LIPIcs.IPEC.2024.3.pdf
  • Filesize: 0.84 MB
  • 22 pages

Document Identifiers

Author Details

Jakub Balabán
  • Faculty of Informatics, Masaryk University, Brno, Czech Republic
Robert Ganian
  • Algorithms and Complexity Group, TU Wien, Vienna, Austria
Mathis Rocton
  • Algorithms and Complexity Group, TU Wien, Vienna, Austria

Cite As Get BibTex

Jakub Balabán, Robert Ganian, and Mathis Rocton. Twin-Width Meets Feedback Edges and Vertex Integrity. In 19th International Symposium on Parameterized and Exact Computation (IPEC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 321, pp. 3:1-3:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024) https://doi.org/10.4230/LIPIcs.IPEC.2024.3

Abstract

The approximate computation of twin-width has attracted significant attention already since the moment the parameter was introduced. A recently proposed approach (STACS 2024) towards obtaining a better understanding of this question is to consider the approximability of twin-width via fixed-parameter algorithms whose running time depends not on twin-width itself, but rather on parameters which impose stronger restrictions on the input graph. The first step that article made in this direction is to establish the fixed-parameter approximability of twin-width (with an additive error of 1) when the runtime parameter is the feedback edge number.
Here, we make several new steps in this research direction and obtain:  
- An asymptotically tight bound between twin-width and the feedback edge number;
- A significantly improved fixed-parameter approximation algorithm for twin-width under the same runtime parameter (i.e., the feedback edge number) which circumvents many of the technicalities of the original result and simultaneously avoids its formerly non-elementary runtime dependency;
- An entirely new fixed-parameter approximation algorithm for twin-width when the runtime parameter is the vertex integrity of the graph.

Subject Classification

ACM Subject Classification
  • Theory of computation → Parameterized complexity and exact algorithms
Keywords
  • twin-width
  • fixed-parameter algorithms
  • feedback edge number
  • vertex integrity

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Jungho Ahn, Kevin Hendrey, Donggyu Kim, and Sang-il Oum. Bounds for the twin-width of graphs. SIAM Journal on Discrete Mathematics, 36(3):2352-2366, 2022. URL: https://doi.org/10.1137/21M1452834.
  2. Jakub Balabán, Robert Ganian, and Mathis Rocton. Computing twin-width parameterized by the feedback edge number. In Olaf Beyersdorff, Mamadou Moustapha Kanté, Orna Kupferman, and Daniel Lokshtanov, editors, 41st International Symposium on Theoretical Aspects of Computer Science, STACS 2024, March 12-14, 2024, Clermont-Ferrand, France, volume 289 of LIPIcs, pages 7:1-7:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024. URL: https://doi.org/10.4230/LIPICS.STACS.2024.7.
  3. Jakub Balabán and Petr Hlinený. Twin-width is linear in the poset width. In Petr A. Golovach and Meirav Zehavi, editors, 16th International Symposium on Parameterized and Exact Computation, IPEC 2021, September 8-10, 2021, Lisbon, Portugal, volume 214 of LIPIcs, pages 6:1-6:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPIcs.IPEC.2021.6.
  4. Jakub Balabán, Petr Hlinený, and Jan Jedelský. Twin-width and transductions of proper k-mixed-thin graphs. In Michael A. Bekos and Michael Kaufmann, editors, Graph-Theoretic Concepts in Computer Science - 48th International Workshop, WG 2022, Tübingen, Germany, June 22-24, 2022, Revised Selected Papers, volume 13453 of Lecture Notes in Computer Science, pages 43-55. Springer, 2022. URL: https://doi.org/10.1007/978-3-031-15914-5_4.
  5. Michael J. Bannister, Sergio Cabello, and David Eppstein. Parameterized complexity of 1-planarity. J. Graph Algorithms Appl., 22(1):23-49, 2018. URL: https://doi.org/10.7155/jgaa.00457.
  6. Pierre Bergé, Édouard Bonnet, and Hugues Déprés. Deciding twin-width at most 4 is np-complete. In Mikolaj Bojanczyk, Emanuela Merelli, and David P. Woodruff, editors, 49th International Colloquium on Automata, Languages, and Programming, ICALP 2022, July 4-8, 2022, Paris, France, volume 229 of LIPIcs, pages 18:1-18:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPIcs.ICALP.2022.18.
  7. Benjamin Bergougnoux, Eduard Eiben, Robert Ganian, Sebastian Ordyniak, and M. S. Ramanujan. Towards a polynomial kernel for directed feedback vertex set. Algorithmica, 83(5):1201-1221, 2021. URL: https://doi.org/10.1007/s00453-020-00777-5.
  8. Sujoy Bhore, Robert Ganian, Fabrizio Montecchiani, and Martin Nöllenburg. Parameterized algorithms for queue layouts. J. Graph Algorithms Appl., 26(3):335-352, 2022. URL: https://doi.org/10.7155/JGAA.00597.
  9. Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. Preprocessing for treewidth: A combinatorial analysis through kernelization. SIAM J. Discret. Math., 27(4):2108-2142, 2013. URL: https://doi.org/10.1137/120903518.
  10. Édouard Bonnet, Colin Geniet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-width II: small classes. In Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 1977-1996. SIAM, 2021. URL: https://doi.org/10.1137/1.9781611976465.118.
  11. Édouard Bonnet, Colin Geniet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-width III: max independent set, min dominating set, and coloring. In Nikhil Bansal, Emanuela Merelli, and James Worrell, editors, 48th International Colloquium on Automata, Languages, and Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual Conference), volume 198 of LIPIcs, pages 35:1-35:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPIcs.ICALP.2021.35.
  12. Édouard Bonnet, Ugo Giocanti, Patrice Ossona de Mendez, Pierre Simon, Stéphan Thomassé, and Szymon Torunczyk. Twin-width IV: ordered graphs and matrices. In Stefano Leonardi and Anupam Gupta, editors, STOC '22: 54th Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy, June 20 - 24, 2022, pages 924-937. ACM, 2022. URL: https://doi.org/10.1145/3519935.3520037.
  13. Édouard Bonnet, Ugo Giocanti, Patrice Ossona de Mendez, and Stéphan Thomassé. Twin-width V: linear minors, modular counting, and matrix multiplication. In Petra Berenbrink, Patricia Bouyer, Anuj Dawar, and Mamadou Moustapha Kanté, editors, 40th International Symposium on Theoretical Aspects of Computer Science, STACS 2023, March 7-9, 2023, Hamburg, Germany, volume 254 of LIPIcs, pages 15:1-15:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPIcs.STACS.2023.15.
  14. Édouard Bonnet, Eun Jung Kim, Amadeus Reinald, and Stéphan Thomassé. Twin-width VI: the lens of contraction sequences. In Joseph (Seffi) Naor and Niv Buchbinder, editors, Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA 2022, Virtual Conference / Alexandria, VA, USA, January 9 - 12, 2022, pages 1036-1056. SIAM, 2022. URL: https://doi.org/10.1137/1.9781611977073.45.
  15. Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-width I: tractable FO model checking. J. ACM, 69(1):3:1-3:46, 2022. URL: https://doi.org/10.1145/3486655.
  16. Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015. URL: https://doi.org/10.1007/978-3-319-21275-3.
  17. Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics. Springer, 2012. Google Scholar
  18. Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer, 2013. URL: https://doi.org/10.1007/978-1-4471-5559-1.
  19. Pål Grønås Drange, Markus S. Dregi, and Pim van 't Hof. On the computational complexity of vertex integrity and component order connectivity. Algorithmica, 76(4):1181-1202, 2016. URL: https://doi.org/10.1007/S00453-016-0127-X.
  20. Pavel Dvorák, Eduard Eiben, Robert Ganian, Dusan Knop, and Sebastian Ordyniak. The complexity landscape of decompositional parameters for ILP: programs with few global variables and constraints. Artif. Intell., 300:103561, 2021. URL: https://doi.org/10.1016/J.ARTINT.2021.103561.
  21. Eduard Eiben, Robert Ganian, Thekla Hamm, Lars Jaffke, and O-joung Kwon. A unifying framework for characterizing and computing width measures. In Mark Braverman, editor, 13th Innovations in Theoretical Computer Science Conference, ITCS 2022, January 31 - February 3, 2022, Berkeley, CA, USA, volume 215 of LIPIcs, pages 63:1-63:23. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPIcs.ITCS.2022.63.
  22. David Eppstein. The widths of strict outerconfluent graphs. CoRR, abs/2308.03967, 2023. URL: https://arxiv.org/abs/2308.03967.
  23. Johannes Klaus Fichte, Robert Ganian, Markus Hecher, Friedrich Slivovsky, and Sebastian Ordyniak. Structure-aware lower bounds and broadening the horizon of tractability for QBF. In LICS, pages 1-14, 2023. URL: https://doi.org/10.1109/LICS56636.2023.10175675.
  24. Robert Ganian, Fabian Klute, and Sebastian Ordyniak. On structural parameterizations of the bounded-degree vertex deletion problem. Algorithmica, 83(1):297-336, 2021. URL: https://doi.org/10.1007/S00453-020-00758-8.
  25. Robert Ganian and Viktoriia Korchemna. The complexity of bayesian network learning: Revisiting the superstructure. In Marc'Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan, editors, Advances in Neural Information Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pages 430-442, 2021. URL: https://proceedings.neurips.cc/paper/2021/hash/040a99f23e8960763e680041c601acab-Abstract.html.
  26. Robert Ganian and Sebastian Ordyniak. The complexity landscape of decompositional parameters for ILP. Artif. Intell., 257:61-71, 2018. URL: https://doi.org/10.1016/J.ARTINT.2017.12.006.
  27. Robert Ganian and Sebastian Ordyniak. The power of cut-based parameters for computing edge-disjoint paths. Algorithmica, 83(2):726-752, 2021. URL: https://doi.org/10.1007/s00453-020-00772-w.
  28. Robert Ganian, Tomás Peitl, Friedrich Slivovsky, and Stefan Szeider. Fixed-parameter tractability of dependency QBF with structural parameters. In Diego Calvanese, Esra Erdem, and Michael Thielscher, editors, Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning, KR 2020, Rhodes, Greece, September 12-18, 2020, pages 392-402, 2020. URL: https://doi.org/10.24963/KR.2020/40.
  29. Tatsuya Gima, Tesshu Hanaka, Masashi Kiyomi, Yasuaki Kobayashi, and Yota Otachi. Exploring the gap between treedepth and vertex cover through vertex integrity. Theor. Comput. Sci., 918:60-76, 2022. URL: https://doi.org/10.1016/J.TCS.2022.03.021.
  30. Tatsuya Gima and Yota Otachi. Extended MSO model checking via small vertex integrity. Algorithmica, 86(1):147-170, 2024. URL: https://doi.org/10.1007/S00453-023-01161-9.
  31. Tesshu Hanaka, Michael Lampis, Manolis Vasilakis, and Kanae Yoshiwatari. Parameterized vertex integrity revisited. CoRR, abs/2402.09971, 2024. URL: https://doi.org/10.48550/arXiv.2402.09971.
  32. Hugo Jacob and Marcin Pilipczuk. Bounding twin-width for bounded-treewidth graphs, planar graphs, and bipartite graphs. In Michael A. Bekos and Michael Kaufmann, editors, Graph-Theoretic Concepts in Computer Science - 48th International Workshop, WG 2022, Tübingen, Germany, June 22-24, 2022, Revised Selected Papers, volume 13453 of Lecture Notes in Computer Science, pages 287-299. Springer, 2022. URL: https://doi.org/10.1007/978-3-031-15914-5_21.
  33. Yasuaki Kobayashi and Hisao Tamaki. Treedepth parameterized by vertex cover number. In Jiong Guo and Danny Hermelin, editors, 11th International Symposium on Parameterized and Exact Computation, IPEC 2016, August 24-26, 2016, Aarhus, Denmark, volume 63 of LIPIcs, pages 18:1-18:11. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. URL: https://doi.org/10.4230/LIPIcs.IPEC.2016.18.
  34. Michael Lampis and Valia Mitsou. Fine-grained meta-theorems for vertex integrity. In Hee-Kap Ahn and Kunihiko Sadakane, editors, 32nd International Symposium on Algorithms and Computation, ISAAC 2021, December 6-8, 2021, Fukuoka, Japan, volume 212 of LIPIcs, pages 34:1-34:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPICS.ISAAC.2021.34.
  35. Sang-il Oum. Rank-width and vertex-minors. J. Comb. Theory, Ser. B, 95(1):79-100, 2005. URL: https://doi.org/10.1016/j.jctb.2005.03.003.
  36. Neil Robertson and Paul D. Seymour. Graph minors. i. excluding a forest. J. Comb. Theory B, 35(1):39-61, 1983. URL: https://doi.org/10.1016/0095-8956(83)90079-5.
  37. Johannes Uhlmann and Mathias Weller. Two-layer planarization parameterized by feedback edge set. Theor. Comput. Sci., 494:99-111, 2013. URL: https://doi.org/10.1016/j.tcs.2013.01.029.
  38. Martijn van Ee. Some notes on bounded starwidth graphs. Inf. Process. Lett., 125:9-14, 2017. URL: https://doi.org/10.1016/J.IPL.2017.04.011.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail