Unsplittable Flow on a Short Path

Authors Ilan Doron-Arad, Fabrizio Grandoni, Ariel Kulik



PDF
Thumbnail PDF

File

LIPIcs.IPEC.2024.5.pdf
  • Filesize: 0.87 MB
  • 22 pages

Document Identifiers

Author Details

Ilan Doron-Arad
  • Computer Science Department, Technion, Haifa, Israel
Fabrizio Grandoni
  • IDSIA, USI-SUPSI, Lugano, Switzerland
Ariel Kulik
  • Computer Science Department, Technion, Haifa, Israel

Cite As Get BibTex

Ilan Doron-Arad, Fabrizio Grandoni, and Ariel Kulik. Unsplittable Flow on a Short Path. In 19th International Symposium on Parameterized and Exact Computation (IPEC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 321, pp. 5:1-5:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024) https://doi.org/10.4230/LIPIcs.IPEC.2024.5

Abstract

In the Unsplittable Flow on a Path problem (UFP), we are given a path graph with edge capacities and a collection of tasks. Each task is characterized by a demand, a profit, and a subpath. Our goal is to select a maximum profit subset of tasks such that the total demand of the selected tasks that use each edge e is at most the capacity of e. BagUFP is the generalization of UFP where tasks are partitioned into bags, and we are allowed to select at most one task per bag. UFP admits a PTAS [Grandoni,Mömke,Wiese'22] but not an EPTAS [Wiese'17]. BagUFP is APX-hard [Spieksma'99] and the current best approximation is O(log n/log log n) [Grandoni,Ingala,Uniyal'15], where n is the number of tasks. 
In this paper, we study the mentioned two problems when parameterized by the number m of edges in the graph, with the goal of designing faster parameterized approximation algorithms. We present a parameterized EPTAS for BagUFP, and a substantially faster parameterized EPTAS for UFP (which is an FPTAS for m = O(1)). We also show that a parameterized FPTAS for UFP (hence for BagUFP) does not exist, therefore our results are qualitatively tight.

Subject Classification

ACM Subject Classification
  • Theory of computation
Keywords
  • Knapsack
  • Approximation Schemes
  • Parameterized Approximations

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Hesham K Alfares. Survey, categorization, and comparison of recent tour scheduling literature. Annals of Operations Research, 127:145-175, 2004. URL: https://doi.org/10.1023/B:ANOR.0000019088.98647.E2.
  2. Aris Anagnostopoulos, Fabrizio Grandoni, Stefano Leonardi, and Andreas Wiese. Constant integrality gap LP formulations of unsplittable flow on a path. In IPCO, pages 25-36, 2013. URL: https://doi.org/10.1007/978-3-642-36694-9_3.
  3. Aris Anagnostopoulos, Fabrizio Grandoni, Stefano Leonardi, and Andreas Wiese. A mazing 2+ε approximation for unsplittable flow on a path. In SODA, pages 26-41, 2014. Google Scholar
  4. Kenneth R Baker. Workforce allocation in cyclical scheduling problems: A survey. Journal of the Operational Research Society, 27(1):155-167, 1976. Google Scholar
  5. N. Bansal, A. Chakrabarti, A. Epstein, and B. Schieber. A quasi-PTAS for unsplittable flow on line graphs. In STOC, pages 721-729. ACM, 2006. URL: https://doi.org/10.1145/1132516.1132617.
  6. N. Bansal, Z. Friggstad, R. Khandekar, and R. Salavatipour. A logarithmic approximation for unsplittable flow on line graphs. In SODA, pages 702-709, 2009. Google Scholar
  7. A. Bar-Noy, R. Bar-Yehuda, A. Freund, J. Naor, and B. Schieber. A unified approach to approximating resource allocation and scheduling. In Proceedings of the 32superscriptnd Annual ACM Symposium on Theory of Computing (STOC '00), pages 735-744. ACM, 2000. URL: https://doi.org/10.1145/335305.335410.
  8. R. Bar-Yehuda, M. Beder, Y. Cohen, and D. Rawitz. Resource allocation in bounded degree trees. In ESA, pages 64-75, 2006. Google Scholar
  9. Jatin Batra, Naveen Garg, Amit Kumar, Tobias Mömke, and Andreas Wiese. New approximation schemes for unsplittable flow on a path. In SODA, pages 47-58, 2015. URL: https://doi.org/10.1137/1.9781611973730.5.
  10. Stephen E Bechtold, Michael J Brusco, and Michael J Showalter. A comparative evaluation of labor tour scheduling methods. Decision Sciences, 22(4):683-699, 1991. Google Scholar
  11. Paul Bonsma, Jens Schulz, and Andreas Wiese. A constant-factor approximation algorithm for unsplittable flow on paths. SIAM Journal on Computing, 43:767-799, 2014. URL: https://doi.org/10.1137/120868360.
  12. Gruia Călinescu, Amit Chakrabarti, Howard J. Karloff, and Yuval Rabani. An improved approximation algorithm for resource allocation. ACM Transactions on Algorithms, 7:48:1-48:7, 2011. URL: https://doi.org/10.1145/2000807.2000816.
  13. Venkatesan T. Chakaravarthy, Anamitra R. Choudhury, Shalmoli Gupta, Sambuddha Roy, and Yogish Sabharwal. Improved algorithms for resource allocation under varying capacity. In ESA, pages 222-234, 2014. URL: https://doi.org/10.1007/978-3-662-44777-2_19.
  14. A. Chakrabarti, C. Chekuri, A. Gupta, and A. Kumar. Approximation algorithms for the unsplittable flow problem. Algorithmica, 47:53-78, 2007. URL: https://doi.org/10.1007/S00453-006-1210-5.
  15. C. Chekuri, A. Ene, and N. Korula. Unsplittable flow in paths and trees and column-restricted packing integer programs. In APPROX-RANDOM, pages 42-55, 2009. Google Scholar
  16. C. Chekuri, M. Mydlarz, and F. Shepherd. Multicommodity demand flow in a tree and packing integer programs. ACM Transactions on Algorithms, 3, 2007. Google Scholar
  17. B. Chen, R. Hassin, and M. Tzur. Allocation of bandwidth and storage. IIE Transactions, 34:501-507, 2002. Google Scholar
  18. M. Chrobak, G. Woeginger, K. Makino, and H. Xu. Caching is hard, even in the fault model. In ESA, pages 195-206, 2010. Google Scholar
  19. Marek Chrobak, Gerhard J Woeginger, Kazuhisa Makino, and Haifeng Xu. Caching is hard—even in the fault model. Algorithmica, 63(4):781-794, 2012. Google Scholar
  20. TM Cover and Joy A Thomas. Elements of information theory, 2006. Google Scholar
  21. A. Darmann, U. Pferschy, and J. Schauer. Resource allocation with time intervals. Theoretical Computer Science, 411:4217-4234, 2010. URL: https://doi.org/10.1016/J.TCS.2010.08.028.
  22. Syamantak Das and Andreas Wiese. On minimizing the makespan with bag constraints. In 13th Workshop on Models and Algorithms for Planning and Scheduling Problems, page 186, 2017. Google Scholar
  23. Ilan Doron-Arad, Fabrizio Grandoni, and Ariel Kulik. Unsplittable flow on a short path. arXiv preprint, 2024. URL: https://doi.org/10.48550/arXiv.2407.10138.
  24. Ilan Doron-Arad, Ariel Kulik, and Hadas Shachnai. An aptas for bin packing with clique-graph conflicts. In Algorithms and Data Structures: 17th International Symposium, WADS 2021, Virtual Event, August 9-11, 2021, Proceedings 17, pages 286-299. Springer, 2021. URL: https://doi.org/10.1007/978-3-030-83508-8_21.
  25. Ilan Doron-Arad, Ariel Kulik, and Hadas Shachnai. An afptas for bin packing with partition matroid via a new method for lp rounding. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023). Schloss-Dagstuhl - Leibniz Zentrum für Informatik, 2023. Google Scholar
  26. Ilan Doron-Arad, Ariel Kulik, and Hadas Shachnai. Budgeted matroid maximization: a parameterized viewpoint. IPEC, 2023. Google Scholar
  27. Ilan Doron-Arad, Ariel Kulik, and Hadas Shachnai. An EPTAS for budgeted matching and budgeted matroid intersection via representative sets. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Schloss-Dagstuhl-Leibniz Zentrum für Informatik, 2023. Google Scholar
  28. Ilan Doron-Arad, Ariel Kulik, and Hadas Shachnai. An EPTAS for budgeted matroid independent set. In Symposium on Simplicity in Algorithms (SOSA), pages 69-83, 2023. URL: https://doi.org/10.1137/1.9781611977585.CH7.
  29. Ilan Doron-Arad, Ariel Kulik, and Hadas Shachnai. An fptas for budgeted laminar matroid independent set. Operations Research Letters, 51(6):632-637, 2023. URL: https://doi.org/10.1016/J.ORL.2023.10.005.
  30. Ilan Doron-Arad, Ariel Kulik, and Hadas Shachnai. Lower bounds for matroid optimization problems with a linear constraint. ICALP proc., 2024. Google Scholar
  31. Ilan Doron-Arad and Hadas Shachnai. Approximating bin packing with conflict graphs via maximization techniques. In Daniël Paulusma and Bernard Ries, editors, WG 2023, Fribourg, Switzerland, June 28-30, 2023, Revised Selected Papers, 2023. Google Scholar
  32. Kilian Grage, Klaus Jansen, and Kim-Manuel Klein. An eptas for machine scheduling with bag-constraints. In The 31st ACM Symposium on Parallelism in Algorithms and Architectures, pages 135-144, 2019. URL: https://doi.org/10.1145/3323165.3323192.
  33. Fabrizio Grandoni, Salvatore Ingala, and Sumedha Uniyal. Improved approximation algorithms for unsplittable flow on a path with time windows. In WAOA, pages 13-24, 2015. URL: https://doi.org/10.1007/978-3-319-28684-6_2.
  34. Fabrizio Grandoni, Tobias Mömke, and Andreas Wiese. Faster (1+ε)-approximation for unsplittable flow on a path via resource augmentation and back. In Petra Mutzel, Rasmus Pagh, and Grzegorz Herman, editors, 29th Annual European Symposium on Algorithms, ESA 2021, September 6-8, 2021, Lisbon, Portugal (Virtual Conference), volume 204 of LIPIcs, pages 49:1-49:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPIcs.ESA.2021.49.
  35. Fabrizio Grandoni, Tobias Mömke, and Andreas Wiese. A PTAS for unsplittable flow on a path. In STOC, pages 289-302. ACM, 2022. URL: https://doi.org/10.1145/3519935.3519959.
  36. Fabrizio Grandoni, Tobias Mömke, and Andreas Wiese. Unsplittable flow on a path: The game! In SODA, pages 906-926. SIAM, 2022. URL: https://doi.org/10.1137/1.9781611977073.39.
  37. Fabrizio Grandoni, Tobias Mömke, Andreas Wiese, and Hang Zhou. To augment or not to augment: Solving unsplittable flow on a path by creating slack. In SODA, pages 2411-2422, 2017. URL: https://doi.org/10.1137/1.9781611974782.159.
  38. Fabrizio Grandoni, Tobias Mömke, Andreas Wiese, and Hang Zhou. A (5/3 + ε)-approximation for unsplittable flow on a path: placing small tasks into boxes. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 607-619, 2018. URL: https://doi.org/10.1145/3188745.3188894.
  39. Fabrizio Grandoni and Rico Zenklusen. Approximation schemes for multi-budgeted independence systems. In European Symposium on Algorithms, pages 536-548. Springer, 2010. URL: https://doi.org/10.1007/978-3-642-15775-2_46.
  40. Hans Kellerer, Ulrich Pferschy, David Pisinger, Hans Kellerer, Ulrich Pferschy, and David Pisinger. The multiple-choice knapsack problem. Knapsack problems, pages 317-347, 2004. Google Scholar
  41. S. Leonardi, A. Marchetti-Spaccamela, and A. Vitaletti. Approximation algorithms for bandwidth and storage allocation problems under real time constraints. In FSTTCS, pages 409-420, 2000. Google Scholar
  42. Dániel Marx. Parameterized complexity and approximation algorithms. Comput. J., 51(1):60-78, 2008. URL: https://doi.org/10.1093/COMJNL/BXM048.
  43. C. A. Phillips, R. N. Uma, and J. Wein. Off-line admission control for general scheduling problems. In Proceedings of the 11superscriptth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA '00), pages 879-888. ACM, 2000. Google Scholar
  44. David Pisinger. A minimal algorithm for the multiple-choice knapsack problem. European Journal of Operational Research, 83(2):394-410, 1995. Google Scholar
  45. Alexander Schrijver et al. Combinatorial optimization: polyhedra and efficiency, volume 24. Springer, 2003. Google Scholar
  46. Prabhakant Sinha and Andris A Zoltners. The multiple-choice knapsack problem. Operations Research, 27(3):503-515, 1979. URL: https://doi.org/10.1287/OPRE.27.3.503.
  47. Frits C. R. Spieksma. On the approximability of an interval scheduling problem. Journal of Scheduling, 2:215-227, 1999. Google Scholar
  48. Jorne Van den Bergh, Jeroen Beliën, Philippe De Bruecker, Erik Demeulemeester, and Liesje De Boeck. Personnel scheduling: A literature review. European journal of operational research, 226(3):367-385, 2013. URL: https://doi.org/10.1016/J.EJOR.2012.11.029.
  49. Andreas Wiese. A (1+ε)-approximation for unsplittable flow on a path in fixed-parameter running time. In 44th International Colloquium on Automata, Languages, and Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland, volume 80 of LIPIcs, pages 67:1-67:13, 2017. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail