Parameterized Inapproximability Hypothesis (PIH) is a central question in the field of parameterized complexity. PIH asserts that given as input a 2-CSP on k variables and alphabet size n, it is 𝖶[1]-hard parameterized by k to distinguish if the input is perfectly satisfiable or if every assignment to the input violates 1% of the constraints. An important implication of PIH is that it yields the tight parameterized inapproximability of the k-maxcoverage problem. In the k-maxcoverage problem, we are given as input a set system, a threshold τ > 0, and a parameter k and the goal is to determine if there exist k sets in the input whose union is at least τ fraction of the entire universe. PIH is known to imply that it is 𝖶[1]-hard parameterized by k to distinguish if there are k input sets whose union is at least τ fraction of the universe or if the union of every k input sets is not much larger than τ⋅ (1-1/e) fraction of the universe. In this work we present a gap preserving FPT reduction (in the reverse direction) from the k-maxcoverage problem to the aforementioned 2-CSP problem, thus showing that the assertion that approximating the k-maxcoverage problem to some constant factor is 𝖶[1]-hard implies PIH. In addition, we present a gap preserving FPT reduction from the k-median problem (in general metrics) to the k-maxcoverage problem, further highlighting the power of gap preserving FPT reductions over classical gap preserving polynomial time reductions.
@InProceedings{karthikc.s._et_al:LIPIcs.IPEC.2024.6, author = {Karthik C. S. and Lee, Euiwoong and Manurangsi, Pasin}, title = {{On Equivalence of Parameterized Inapproximability of k-Median, k-Max-Coverage, and 2-CSP}}, booktitle = {19th International Symposium on Parameterized and Exact Computation (IPEC 2024)}, pages = {6:1--6:18}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-353-9}, ISSN = {1868-8969}, year = {2024}, volume = {321}, editor = {Bonnet, \'{E}douard and Rz\k{a}\.{z}ewski, Pawe{\l}}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2024.6}, URN = {urn:nbn:de:0030-drops-222322}, doi = {10.4230/LIPIcs.IPEC.2024.6}, annote = {Keywords: Parameterized complexity, Hardness of Approximation, Parameterized Inapproximability Hypothesis, max coverage, k-median} }
Feedback for Dagstuhl Publishing