Document

# Matching Cuts in Graphs of High Girth and H-Free Graphs

## File

LIPIcs.ISAAC.2023.31.pdf
• Filesize: 0.76 MB
• 16 pages

## Acknowledgements

We thank Hoang-Oanh Le for a significant simplification of our original proof of Theorem 6, which we simplified a bit further. We thank Van Bang Le for observing the bound on the maximum degree in Theorem 6, solving an Open Problem Garden question.

## Cite As

Carl Feghali, Felicia Lucke, Daniël Paulusma, and Bernard Ries. Matching Cuts in Graphs of High Girth and H-Free Graphs. In 34th International Symposium on Algorithms and Computation (ISAAC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 283, pp. 31:1-31:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)
https://doi.org/10.4230/LIPIcs.ISAAC.2023.31

## Abstract

The (Perfect) Matching Cut problem is to decide if a connected graph has a (perfect) matching that is also an edge cut. The Disconnected Perfect Matching problem is to decide if a connected graph has a perfect matching that contains a matching cut. Both Matching Cut and Disconnected Perfect Matching are NP-complete for planar graphs of girth 5, whereas Perfect Matching Cut is known to be NP-complete even for subcubic bipartite graphs of arbitrarily large fixed girth. We prove that Matching Cut and Disconnected Perfect Matching are also NP-complete for bipartite graphs of arbitrarily large fixed girth and bounded maximum degree. Our result for Matching Cut resolves a 20-year old open problem. We also show that the more general problem d-Cut, for every fixed d ≥ 1, is NP-complete for bipartite graphs of arbitrarily large fixed girth and bounded maximum degree. Furthermore, we show that Matching Cut, Perfect Matching Cut and Disconnected Perfect Matching are NP-complete for H-free graphs whenever H contains a connected component with two vertices of degree at least 3. Afterwards, we update the state-of-the-art summaries for H-free graphs and compare them with each other, and with a known and full classification of the Maximum Matching Cut problem, which is to determine a largest matching cut of a graph G. Finally, by combining existing results, we obtain a complete complexity classification of Perfect Matching Cut for H-subgraph-free graphs where H is any finite set of graphs.

## Subject Classification

##### ACM Subject Classification
• Mathematics of computing → Graph algorithms
##### Keywords
• matching cut
• perfect matching
• girth
• H-free graph

## Metrics

• Access Statistics
• Total Accesses (updated on a weekly basis)
0

## References

1. Noga Alon and Vitali D Milman. λ1, isoperimetric inequalities for graphs, and superconcentrators. Journal of Combinatorial Theory, Series B, 38:73-88, 1985.
2. Júlio Araújo, Nathann Cohen, Frédéric Giroire, and Frédéric Havet. Good edge-labelling of graphs. Discrete Applied Mathematics, 160:2502-2513, 2012.
3. N. R. Aravind, Subrahmanyam Kalyanasundaram, and Anjeneya Swami Kare. Vertex partitioning problems on graphs with bounded tree width. Discrete Applied Mathematics, 319:254-270, 2022.
4. N. R. Aravind and Roopam Saxena. An FPT algorithm for Matching Cut and d-Cut. Proc. IWOCA 2021, LNCS, 12757:531-543, 2021.
5. Edouard Bonnet, Dibyayan Chakraborty, and Julien Duron. Cutting barnette graphs perfectly is hard. Proc. WG 2023, LNCS, to appear.
6. Paul S. Bonsma. The complexity of the Matching-Cut problem for planar graphs and other graph classes. Journal of Graph Theory, 62:109-126, 2009 (conference version: WG 2003).
7. Mieczyslaw Borowiecki and Katarzyna Jesse-Józefczyk. Matching cutsets in graphs of diameter 2. Theoretical Computer Science, 407:574-582, 2008.
8. Valentin Bouquet and Christophe Picouleau. The complexity of the Perfect Matching-Cut problem. CoRR, abs/2011.03318, 2020. URL: https://arxiv.org/abs/2011.03318.
9. Chi-Yeh Chen, Sun-Yuan Hsieh, Hoàng-Oanh Le, Van Bang Le, and Sheng-Lung Peng. Matching Cut in graphs with large minimum degree. Algorithmica, 83:1238-1255, 2021.
10. Vasek Chvátal. Recognizing decomposable graphs. Journal of Graph Theory, 8:51-53, 1984.
11. Peter G. Lejeune Dirichlet. Beweis des Satzes, dass jede unbegrenzte arithmetische Progression, deren erstes Glied und Differenz ganze Zahlen ohne gemeinschaftlichen Faktor sind, unendlich viele Primzahlen enthält. Abhandlungen der Königlichen Preußischen Akademie der Wissenschaften zu Berlin, 1837.
12. Jozef Dodziuk. Difference equations, isoperimetric inequality and transience of certain random walks. Transactions of the American Mathematical Society, 284:787-794, 1984.
13. Arthur M. Farley and Andrzej Proskurowski. Networks immune to isolated line failures. Networks, 12:393-403, 1982.
14. Carl Feghali. A note on Matching-Cut in P_t-free graphs. Information Processing Letters, 179:106294, 2023.
15. Petr A. Golovach, Christian Komusiewicz, Dieter Kratsch, and Van Bang Le. Refined notions of parameterized enumeration kernels with applications to matching cut enumeration. Journal of Computer and System Sciences, 123:76-102, 2022.
16. Petr A. Golovach, Daniël Paulusma, and Jian Song. Computing vertex-surjective homomorphisms to partially reflexive trees. Theoretical Computer Science, 457:86-100, 2012.
17. Guilherme Gomes and Ignasi Sau. Finding cuts of bounded degree: complexity, FPT and exact algorithms, and kernelization. Algorithmica, 83:1677-1706, 2021.
18. Ronald L. Graham. On primitive graphs and optimal vertex assignments. Annals of the New York Academy of Sciences, 175:170-186, 1970.
19. Pinar Heggernes and Jan Arne Telle. Partitioning graphs into generalized dominating sets. Nordic Journal of Computing, 5:128-142, 1998.
20. Matthew Johnson, Barnaby Martin, Jelle J. Oostveen, Sukanya Pandey, Daniël Paulusma, Siani Smith, and Erik Jan van Leeuwen. Complexity framework for forbidden subgraphs I: The framework. CoRR, abs/2211.12887, 2022. URL: https://arxiv.org/abs/2211.12887.
21. Matthew Johnson, Barnaby Martin, Sukanya Pandey, Daniël Paulusma, Siani Smith, and Erik Jan van Leeuwen. Complexity framework for forbidden subgraphs III: When problems are tractable on subcubic graphs. Proc. MFCS 2023, LIPIcs, 272:57:1-57:15, 2023.
22. Christian Komusiewicz, Dieter Kratsch, and Van Bang Le. Matching Cut: Kernelization, single-exponential time FPT, and exact exponential algorithms. Discrete Applied Mathematics, 283:44-58, 2020.
23. Dieter Kratsch and Van Bang Le. Algorithms solving the Matching Cut problem. Theoretical Computer Science, 609:328-335, 2016.
24. Hoang-Oanh Le and Van Bang Le. A complexity dichotomy for Matching Cut in (bipartite) graphs of fixed diameter. Theoretical Computer Science, 770:69-78, 2019.
25. Hoàng-Oanh Le and Van Bang Le. Complexity results for matching cut problems in graphs without long induced paths. Proc. WG 2023, LNCS, to appear.
26. Van Bang Le and Bert Randerath. On stable cutsets in line graphs. Theoretical Computer Science, 301:463-475, 2003.
27. Van Bang Le and Jan Arne Telle. The Perfect Matching Cut problem revisited. Proc. WG 2021, LNCS, 12911:182-194, 2021.
28. Alexander Lubotzky, Ralph Phillips, and Peter Sarnak. Ramanujan graphs. Combinatorica, 8:261-277, 1988.
29. Felicia Lucke, Daniël Paulusma, and Bernard Ries. On the complexity of Matching Cut for graphs of bounded radius and H-free graphs. Theoretical Computer Science, 936, 2022.
30. Felicia Lucke, Daniël Paulusma, and Bernard Ries. Dichotomies for Maximum Matching Cut: H-Freeness, Bounded Diameter, Bounded Radius. Proc. MFCS 2023, LIPIcs, 272:64:1-64:15, 2023.
31. Felicia Lucke, Daniël Paulusma, and Bernard Ries. Finding matching cuts in H-free graphs. Algorithmica, to appear.
32. Augustine M. Moshi. Matching cutsets in graphs. Journal of Graph Theory, 13:527-536, 1989.
33. Open problem garden. http://www.openproblemgarden.org/op/matching_cut_and_girth. (accessed on 22 June 2023).
34. Maurizio Patrignani and Maurizio Pizzonia. The complexity of the Matching-Cut problem. Proc. WG 2001, LNCS, 2204:284-295, 2001.
35. Harold N. Shapiro. Introduction to the Theory of Numbers. Dover Publications, 2008.
X

Feedback for Dagstuhl Publishing