k-Universality of Regular Languages

Authors Duncan Adamson , Pamela Fleischmann , Annika Huch, Tore Koß , Florin Manea , Dirk Nowotka



PDF
Thumbnail PDF

File

LIPIcs.ISAAC.2023.4.pdf
  • Filesize: 0.85 MB
  • 21 pages

Document Identifiers

Author Details

Duncan Adamson
  • Leverhulme Centre for Functional Material Design, University of Liverpool, UK
Pamela Fleischmann
  • Department of Computer Science, Kiel University, Germany
Annika Huch
  • Department of Computer Science, Kiel University, Germany
Tore Koß
  • Department of Computer Science, University of Göttingen, Germany
Florin Manea
  • Department of Computer Science, University of Göttingen, Germany
Dirk Nowotka
  • Department of Computer Science, Kiel University, Germany

Cite AsGet BibTex

Duncan Adamson, Pamela Fleischmann, Annika Huch, Tore Koß, Florin Manea, and Dirk Nowotka. k-Universality of Regular Languages. In 34th International Symposium on Algorithms and Computation (ISAAC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 283, pp. 4:1-4:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)
https://doi.org/10.4230/LIPIcs.ISAAC.2023.4

Abstract

A subsequence of a word w is a word u such that u = w[i₁] w[i₂] … w[i_k], for some set of indices 1 ≤ i₁ < i₂ < … < i_k ≤ |w|. A word w is k-subsequence universal over an alphabet Σ if every word in Σ^k appears in w as a subsequence. In this paper, we study the intersection between the set of k-subsequence universal words over some alphabet Σ and regular languages over Σ. We call a regular language L k-∃-subsequence universal if there exists a k-subsequence universal word in L, and k-∀-subsequence universal if every word of L is k-subsequence universal. We give algorithms solving the problems of deciding if a given regular language, represented by a finite automaton recognising it, is k-∃-subsequence universal and, respectively, if it is k-∀-subsequence universal, for a given k. The algorithms are FPT w.r.t. the size of the input alphabet, and their run-time does not depend on k; they run in polynomial time in the number n of states of the input automaton when the size of the input alphabet is O(log n). Moreover, we show that the problem of deciding if a given regular language is k-∃-subsequence universal is NP-complete, when the language is over a large alphabet. Further, we provide algorithms for counting the number of k-subsequence universal words (paths) accepted by a given deterministic (respectively, nondeterministic) finite automaton, and ranking an input word (path) within the set of k-subsequence universal words accepted by a given finite automaton.

Subject Classification

ACM Subject Classification
  • Theory of computation → Formal languages and automata theory
Keywords
  • String Algorithms
  • Regular Languages
  • Finite Automata
  • Subsequences

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. D. Adamson. Ranking binary unlabelled necklaces in polynomial time. In DCFS, pages 15-29. Springer, 2022. Google Scholar
  2. D. Adamson. Ranking and unranking k-subsequence universal words. In Anna Frid and Robert Mercaş, editors, WORDS, pages 47-59. Springer Nature Switzerland, 2023. Google Scholar
  3. D. Adamson, A. Deligkas, V. V. Gusev, and I. Potapov. Ranking bracelets in polynomial time. CPM, pages 4-17, 2021. Google Scholar
  4. D. Adamson, M. Kosche, T. Koß, F. Manea, and S. Siemer. Longest common subsequence with gap constraints. In Anna Frid and Robert Mercaş, editors, WORDS, pages 60-76, 2023. Google Scholar
  5. A. Artikis, A. Margara, M. Ugarte, S. Vansummeren, and M. Weidlich. Complex event recognition languages: Tutorial. In DEBS, pages 7-10, 2017. Google Scholar
  6. L. Barker, P. Fleischmann, K. Harwardt, F. Manea, and D. Nowotka. Scattered factor-universality of words. In DLT, pages 14-28. Springer, 2020. Google Scholar
  7. H. Z. Q. Chen, S. Kitaev, T. Mütze, and B. Y. Sun. On universal partial words. Electronic Notes in Discrete Mathematics, 61:231-237, 2017. Google Scholar
  8. M. Crochemore, C. Hancart, and T. Lecroq. Algorithms on strings. Cambridge University Press, 2007. Google Scholar
  9. J.D. Day, P. Fleischmann, M. Kosche, T. Koß, F. Manea, and S. Siemer. The edit distance to k-subsequence universality. In STACS, volume 187, pages 25:1-25:19, 2021. Google Scholar
  10. N. G. de Bruijn. A combinatorial problem. Koninklijke Nederlandse Akademie v. Wetenschappen, 49:758-764, 1946. Google Scholar
  11. L. Fleischer and M. Kufleitner. Testing simon’s congruence. In MFCS. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018. Google Scholar
  12. P. Fleischmann, S.B. Germann, and D. Nowotka. Scattered factor universality-the power of the remainder. preprint arXiv:2104.09063 (published at RuFiDim), 2021. Google Scholar
  13. P. Fleischmann, L. Haschke, A. Huch, A. Mayrock, and D. Nowotka. Nearly k-universal words-investigating a part of simon’s congruence. In DCFS, pages 57-71, 2022. Google Scholar
  14. P. Fleischmann, J. Höfer, A. Huch, and D. Nowotka. α-β-factorization and the binary case of simon’s congruence, 2023. URL: https://arxiv.org/abs/2306.14192.
  15. F. V. Fomin, D. Kratsch, I. Todinca, and Y. Villanger. Exact algorithms for treewidth and minimum fill-in. SIAM J. Comput., 38(3):1058-1079, 2008. URL: https://doi.org/10.1137/050643350.
  16. H. Fredricksen and J. Maiorana. Necklaces of beads in k colors and k-ary de Bruijn sequences. Discrete Mathematics, 23(3):207-210, 1978. Google Scholar
  17. A. Frochaux and S. Kleest-Meißner. Puzzling over subsequence-query extensions: Disjunction and generalised gaps. In AMW 2023, volume 3409 of CEUR Workshop Proceedings. CEUR-WS.org, 2023. Google Scholar
  18. P. Gawrychowski, M. Kosche, T. Koß, F. Manea, and S. Siemer. Efficiently Testing Simon’s Congruence. In STACS, volume 187, pages 34:1-34:18, 2021. Google Scholar
  19. P. Gawrychowski, M. Lange, N. Rampersad, J. O. Shallit, and M. Szykula. Existential length universality. In Proc. STACS 2020, volume 154 of LIPIcs, pages 16:1-16:14, 2020. Google Scholar
  20. E. N. Gilbert and J. Riordan. Symmetry types of periodic sequences. Illinois Journal of Mathematics, 5(4):657-665, 1961. Google Scholar
  21. B. Goeckner, C. Groothuis, C. Hettle, B. Kell, P. Kirkpatrick, R. Kirsch, and R. W. Solava. Universal partial words over non-binary alphabets. Theor. Comput. Sci, 713:56-65, 2018. Google Scholar
  22. S. Halfon, P. Schnoebelen, and G. Zetzsche. Decidability, complexity, and expressiveness of first-order logic over the subword ordering. In LICS, pages 1-12. IEEE, 2017. Google Scholar
  23. R. Han, S. Wang, and X. Gao. Novel algorithms for efficient subsequence searching and mapping in nanopore raw signals towards targeted sequencing. Bioinformatics, 36(5):1333-1343, 2020. Google Scholar
  24. J.-J. Hebrard. An algorithm for distinguishing efficiently bit-strings by their subsequences. Theoretical Computer Science, 82(1):35-49, 1991. Google Scholar
  25. M. Holzer and M. Kutrib. Descriptional and computational complexity of finite automata - A survey. Inf. Comput., 209(3):456-470, 2011. Google Scholar
  26. J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages and Computation. Addison-Wesley, 1979. Google Scholar
  27. P. Karandikar, M. Kufleitner, and P. Schnoebelen. On the index of Simon’s congruence for piecewise testability. Inf. Process. Lett., 115(4):515-519, 2015. Google Scholar
  28. P. Karandikar and P. Schnoebelen. The height of piecewise-testable languages with applications in logical complexity. In CSL, 2016. Google Scholar
  29. S. Kim, Y. Han, S. Ko, and K. Salomaa. On simon’s congruence closure of a string. In DCFS 2022, Proceedings, volume 13439 of Lecture Notes in Computer Science, pages 127-141. Springer, 2022. Google Scholar
  30. S. Kim, Y. Han, S. Ko, and K. Salomaa. On the simon’s congruence neighborhood of languages. In DLT 2023, Proceedings, volume 13911 of Lecture Notes in Computer Science, pages 168-181. Springer, 2023. Google Scholar
  31. S. Kim, S. Ko, and Y. Han. Simon’s congruence pattern matching. In ISAAC 2022, Proceedings, volume 248 of LIPIcs, pages 60:1-60:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. Google Scholar
  32. S. Kleest-Meißner, R. Sattler, M. L. Schmid, N. Schweikardt, and M. Weidlich. Discovering event queries from traces: Laying foundations for subsequence-queries with wildcards and gap-size constraints. In ICDT 2022, Proceedings, volume 220 of LIPIcs, pages 18:1-18:21, 2022. Google Scholar
  33. S. Kleest-Meißner, R. Sattler, M. L. Schmid, N. Schweikardt, and M. Weidlich. Discovering multi-dimensional subsequence queries from traces - from theory to practice. In BTW 2023, Proceedings, volume P-331 of LNI, pages 511-533, 2023. Google Scholar
  34. T. Kociumaka, J. Radoszewski, and W. Rytter. Computing k-th Lyndon word and decoding lexicographically minimal de Bruijn sequence. In CPM, pages 202-211. Springer, 2014. Google Scholar
  35. M. Kosche, T. Koß, F. Manea, and S. Siemer. Absent subsequences in words. In RP, pages 115-131. Springer, 2021. Google Scholar
  36. M. Kosche, T. Koß, F. Manea, and S. Siemer. Combinatorial algorithms for subsequence matching: A survey. In Henning Bordihn, Géza Horváth, and György Vaszil, editors, NCMA, 2022. Google Scholar
  37. M. Krötzsch, T. Masopust, and M. Thomazo. Complexity of universality and related problems for partially ordered NFAs. Inf. Comput., 255:177-192, 2017. Google Scholar
  38. M. Lothaire. Combinatorics on Words. Cambridge Mathematical Library. Cambridge University Press, 1997. Google Scholar
  39. M. H. Martin. A problem in arrangements. Bull. Amer. Math. Soc., 40(12):859-864, December 1934. Google Scholar
  40. A. Mateescu, A. Salomaa, and S. Yu. Subword histories and parikh matrices. Journal of Computer and System Sciences, 68(1):1-21, 2004. Google Scholar
  41. N. Rampersad, J. Shallit, and Z. Xu. The computational complexity of universality problems for prefixes, suffixes, factors, and subwords of regular languages. Fundam. Inf., 116(1-4):223-236, January 2012. Google Scholar
  42. C. Savage. A survey of combinatorial gray codes. SIAM review, 39(4):605-629, 1997. Google Scholar
  43. J. Sawada and A. Williams. Practical algorithms to rank necklaces, Lyndon words, and de Bruijn sequences. Journal of Discrete Algorithms, 43:95-110, 2017. Google Scholar
  44. P. Schnoebelen and P. Karandikar. The height of piecewise-testable languages and the complexity of the logic of subwords. Logical Methods in Computer Science, 15, 2019. Google Scholar
  45. P. Schnoebelen and J. Veron. On arch factorization and subword universality for words and compressed words. In WORDS 2023, Proceedings, volume 13899 of Lecture Notes in Computer Science, pages 274-287. Springer, 2023. Google Scholar
  46. A. C. Shaw. Software descriptions with flow expressions. IEEE Transactions on Software Engineering, 3:242-254, 1978. Google Scholar
  47. R. Shikder, P. Thulasiraman, P. Irani, and P. Hu. An openmp-based tool for finding longest common subsequence in bioinformatics. BMC research notes, 12:1-6, 2019. Google Scholar
  48. I. Simon. Piecewise testable events. In Autom. Theor. Form. Lang., 2nd GI Conf., volume 33 of LNCS, pages 214-222. Springer, 1975. Google Scholar
  49. I. Simon. Words distinguished by their subwords. WORDS, 27:6-13, 2003. Google Scholar
  50. Z. Troniĉek. Common subsequence automaton. In CIAA, pages 270-275, 2003. Google Scholar
  51. G. Zetzsche. The complexity of downward closure comparisons. In ICALP, volume 55, pages 123:1-123:14, 2016. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail