A subsequence of a word w is a word u such that u = w[i₁] w[i₂] … w[i_k], for some set of indices 1 ≤ i₁ < i₂ < … < i_k ≤ |w|. A word w is k-subsequence universal over an alphabet Σ if every word in Σ^k appears in w as a subsequence. In this paper, we study the intersection between the set of k-subsequence universal words over some alphabet Σ and regular languages over Σ. We call a regular language L k-∃-subsequence universal if there exists a k-subsequence universal word in L, and k-∀-subsequence universal if every word of L is k-subsequence universal. We give algorithms solving the problems of deciding if a given regular language, represented by a finite automaton recognising it, is k-∃-subsequence universal and, respectively, if it is k-∀-subsequence universal, for a given k. The algorithms are FPT w.r.t. the size of the input alphabet, and their run-time does not depend on k; they run in polynomial time in the number n of states of the input automaton when the size of the input alphabet is O(log n). Moreover, we show that the problem of deciding if a given regular language is k-∃-subsequence universal is NP-complete, when the language is over a large alphabet. Further, we provide algorithms for counting the number of k-subsequence universal words (paths) accepted by a given deterministic (respectively, nondeterministic) finite automaton, and ranking an input word (path) within the set of k-subsequence universal words accepted by a given finite automaton.
@InProceedings{adamson_et_al:LIPIcs.ISAAC.2023.4, author = {Adamson, Duncan and Fleischmann, Pamela and Huch, Annika and Ko{\ss}, Tore and Manea, Florin and Nowotka, Dirk}, title = {{k-Universality of Regular Languages}}, booktitle = {34th International Symposium on Algorithms and Computation (ISAAC 2023)}, pages = {4:1--4:21}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-289-1}, ISSN = {1868-8969}, year = {2023}, volume = {283}, editor = {Iwata, Satoru and Kakimura, Naonori}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2023.4}, URN = {urn:nbn:de:0030-drops-193064}, doi = {10.4230/LIPIcs.ISAAC.2023.4}, annote = {Keywords: String Algorithms, Regular Languages, Finite Automata, Subsequences} }
Feedback for Dagstuhl Publishing