LIPIcs.ISAAC.2023.40.pdf
- Filesize: 1.02 MB
- 14 pages
The b-Coloring problem, which given a graph G and an integer k asks whether G has a proper k-coloring such that each color class has a vertex adjacent to all color classes except its own, is known to be FPT parameterized by the vertex cover number and XP and 𝖶[1]-hard parameterized by clique-width. Its complexity when parameterized by the treewidth of the input graph remained an open problem. We settle this question by showing that b-Coloring is XNLP-complete when parameterized by the pathwidth of the input graph. Besides determining the precise parameterized complexity of this problem, this implies that b-Coloring parameterized by pathwidth is 𝖶[t]-hard for all t, and resolves the parameterized complexity of b-Coloring parameterized by treewidth. We complement this result by showing that b-Coloring is FPT when parameterized by neighborhood diversity and by twin cover, two parameters that generalize vertex cover to more dense graphs, but are incomparable to pathwidth.
Feedback for Dagstuhl Publishing