FPT Approximations for Fair k-Min-Sum-Radii

Authors Lena Carta, Lukas Drexler , Annika Hennes , Clemens Rösner, Melanie Schmidt



PDF
Thumbnail PDF

File

LIPIcs.ISAAC.2024.16.pdf
  • Filesize: 0.85 MB
  • 18 pages

Document Identifiers

Author Details

Lena Carta
  • University of Bonn, Germany
Lukas Drexler
  • Heinrich Heine University Düsseldorf, Germany
Annika Hennes
  • Heinrich Heine University Düsseldorf, Germany
Clemens Rösner
  • Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI, Sankt Augustin, Germany
Melanie Schmidt
  • Heinrich Heine University Düsseldorf, Germany

Cite As Get BibTex

Lena Carta, Lukas Drexler, Annika Hennes, Clemens Rösner, and Melanie Schmidt. FPT Approximations for Fair k-Min-Sum-Radii. In 35th International Symposium on Algorithms and Computation (ISAAC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 322, pp. 16:1-16:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024) https://doi.org/10.4230/LIPIcs.ISAAC.2024.16

Abstract

We consider the k-min-sum-radii (k-MSR) clustering problem with fairness constraints. The k-min-sum-radii problem is a mixture of the classical k-center and k-median problems. We are given a set of points P in a metric space and a number k and aim to partition the points into k clusters, each of the clusters having one designated center. The objective to minimize is the sum of the radii of the k clusters (where in k-center we would only consider the maximum radius and in k-median we would consider the sum of the individual points' costs).
Various notions of fair clustering have been introduced lately, and we follow the definitions due to Chierichetti et al. [Flavio Chierichetti et al., 2017] which demand that cluster compositions shall follow the proportions of the input point set with respect to some given sensitive attribute. For the easier case where the sensitive attribute only has two possible values and each is equally frequent in the input, the aim is to compute a clustering where all clusters have a 1:1 ratio with respect to this attribute. We call this the 1:1 case.
There has been a surge of FPT-approximation algorithms for the k-MSR problem lately, solving the problem both in the unconstrained case and in several constrained problem variants. We add to this research area by designing an FPT (6+ε)-approximation that works for k-MSR under the mentioned general fairness notion. For the special 1:1 case, we improve our algorithm to achieve a (3+ε)-approximation.

Subject Classification

ACM Subject Classification
  • Theory of computation → Fixed parameter tractability
  • Theory of computation → Approximation algorithms analysis
Keywords
  • Clustering
  • k-min-sum-radii
  • fairness

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Marek Adamczyk, Jaroslaw Byrka, Jan Marcinkowski, Syed Mohammad Meesum, and Michal Wlodarczyk. Constant-factor FPT approximation for capacitated k-median. In Michael A. Bender, Ola Svensson, and Grzegorz Herman, editors, 27th Annual European Symposium on Algorithms, ESA 2019, September 9-11, 2019, Munich/Garching, Germany, volume 144 of LIPIcs, pages 1:1-1:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. URL: https://doi.org/10.4230/LIPICS.ESA.2019.1.
  2. Gagan Aggarwal, Rina Panigrahy, Tomás Feder, Dilys Thomas, Krishnaram Kenthapadi, Samir Khuller, and An Zhu. Achieving anonymity via clustering. ACM Trans. Algorithms, 6(3):49:1-49:19, 2010. URL: https://doi.org/10.1145/1798596.1798602.
  3. Sara Ahmadian and Chaitanya Swamy. Approximation algorithms for clustering problems with lower bounds and outliers. In Proc. of the 43rd ICALP, pages 69:1-69:15, 2016. URL: https://doi.org/10.4230/LIPICS.ICALP.2016.69.
  4. Aditya Anand and Euiwoong Lee. Separating k-median from the supplier version. In Jens Vygen and Jaroslaw Byrka, editors, Integer Programming and Combinatorial Optimization - 25th International Conference, IPCO 2024, Wrocław, Poland, July 3-5, 2024, Proceedings, volume 14679 of Lecture Notes in Computer Science, pages 14-27. Springer, 2024. URL: https://doi.org/10.1007/978-3-031-59835-7_2.
  5. Sayan Bandyapadhyay, William Lochet, and Saket Saurabh. FPT constant-approximations for capacitated clustering to minimize the sum of cluster radii. In Erin W. Chambers and Joachim Gudmundsson, editors, 39th International Symposium on Computational Geometry, SoCG 2023, June 12-15, 2023, Dallas, Texas, USA, volume 258 of LIPIcs, pages 12:1-12:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPICS.SOCG.2023.12.
  6. Suman Kalyan Bera, Deeparnab Chakrabarty, Nicolas Flores, and Maryam Negahbani. Fair algorithms for clustering. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d'Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pages 4955-4966, 2019. URL: https://proceedings.neurips.cc/paper/2019/hash/fc192b0c0d270dbf41870a63a8c76c2f-Abstract.html.
  7. Ioana Oriana Bercea, Martin Groß, Samir Khuller, Aounon Kumar, Clemens Rösner, Daniel R. Schmidt, and Melanie Schmidt. On the cost of essentially fair clusterings. In Dimitris Achlioptas and László A. Végh, editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2019, September 20-22, 2019, Massachusetts Institute of Technology, Cambridge, MA, USA, volume 145 of LIPIcs, pages 18:1-18:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. URL: https://doi.org/10.4230/LIPICS.APPROX-RANDOM.2019.18.
  8. Matteo Böhm, Adriano Fazzone, Stefano Leonardi, and Chris Schwiegelshohn. Fair clustering with multiple colors. CoRR, abs/2002.07892, 2020. URL: https://arxiv.org/abs/2002.07892.
  9. Moritz Buchem, Katja Ettmayr, Hugo K. K. Rosado, and Andreas Wiese. A (3 + ε)-approximation algorithm for the minimum sum of radii problem with outliers and extensions for generalized lower bounds. In David P. Woodruff, editor, Proceedings of the 2024 ACM-SIAM Symposium on Discrete Algorithms, SODA 2024, Alexandria, VA, USA, January 7-10, 2024, pages 1738-1765. SIAM, 2024. URL: https://doi.org/10.1137/1.9781611977912.69.
  10. Jaroslaw Byrka, Thomas W. Pensyl, Bartosz Rybicki, Aravind Srinivasan, and Khoa Trinh. An improved approximation for k-median, and positive correlation in budgeted optimization. In Piotr Indyk, editor, Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015, pages 737-756. SIAM, 2015. URL: https://doi.org/10.1137/1.9781611973730.50.
  11. Moses Charikar and Rina Panigrahy. Clustering to minimize the sum of cluster diameters. In Jeffrey Scott Vitter, Paul G. Spirakis, and Mihalis Yannakakis, editors, Proceedings on 33rd Annual ACM Symposium on Theory of Computing, July 6-8, 2001, Heraklion, Crete, Greece, pages 1-10. ACM, 2001. URL: https://doi.org/10.1145/380752.380753.
  12. Xianrun Chen, Dachuan Xu, Yicheng Xu, and Yong Zhang. Parameterized approximation algorithms for sum of radii clustering and variants. In Michael J. Wooldridge, Jennifer G. Dy, and Sriraam Natarajan, editors, Thirty-Eighth AAAI Conference on Artificial Intelligence, AAAI 2024, Thirty-Sixth Conference on Innovative Applications of Artificial Intelligence, IAAI 2024, Fourteenth Symposium on Educational Advances in Artificial Intelligence, EAAI 2014, February 20-27, 2024, Vancouver, Canada, pages 20666-20673. AAAI Press, 2024. URL: https://doi.org/10.1609/AAAI.V38I18.30053.
  13. Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, and Sergei Vassilvitskii. Fair clustering through fairlets. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett, editors, Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pages 5029-5037, 2017. URL: https://proceedings.neurips.cc/paper/2017/hash/978fce5bcc4eccc88ad48ce3914124a2-Abstract.html.
  14. Vincent Cohen-Addad, Anupam Gupta, Amit Kumar, Euiwoong Lee, and Jason Li. Tight FPT approximations for k-median and k-means. In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi, editors, 46th International Colloquium on Automata, Languages, and Programming, ICALP 2019, July 9-12, 2019, Patras, Greece, volume 132 of LIPIcs, pages 42:1-42:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. URL: https://doi.org/10.4230/LIPICS.ICALP.2019.42.
  15. Vincent Cohen-Addad and Jason Li. On the fixed-parameter tractability of capacitated clustering. In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi, editors, 46th International Colloquium on Automata, Languages, and Programming, ICALP 2019, July 9-12, 2019, Patras, Greece, volume 132 of LIPIcs, pages 41:1-41:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. URL: https://doi.org/10.4230/LIPICS.ICALP.2019.41.
  16. Lukas Drexler, Annika Hennes, Abhiruk Lahiri, Melanie Schmidt, and Julian Wargalla. Approximating fair k-min-sum-radii in euclidean space. In Jaroslaw Byrka and Andreas Wiese, editors, Approximation and Online Algorithms - 21st International Workshop, WAOA 2023, Amsterdam, The Netherlands, September 7-8, 2023, Proceedings, volume 14297 of Lecture Notes in Computer Science, pages 119-133. Springer, 2023. URL: https://doi.org/10.1007/978-3-031-49815-2_9.
  17. Zachary Friggstad and Mahya Jamshidian. Improved polynomial-time approximations for clustering with minimum sum of radii or diameters. In Shiri Chechik, Gonzalo Navarro, Eva Rotenberg, and Grzegorz Herman, editors, 30th Annual European Symposium on Algorithms, ESA 2022, September 5-9, 2022, Berlin/Potsdam, Germany, volume 244 of LIPIcs, pages 56:1-56:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPICS.ESA.2022.56.
  18. Teofilo F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theor. Comput. Sci., 38:293-306, 1985. URL: https://doi.org/10.1016/0304-3975(85)90224-5.
  19. Sudipto Guha and Samir Khuller. Greedy strikes back: Improved facility location algorithms. J. Algorithms, 31(1):228-248, 1999. URL: https://doi.org/10.1006/JAGM.1998.0993.
  20. Dorit S. Hochbaum and David B. Shmoys. A best possible heuristic for the k-center problem. Math. Oper. Res., 10(2):180-184, 1985. URL: https://doi.org/10.1287/MOOR.10.2.180.
  21. Wen-Lian Hsu and George L. Nemhauser. Easy and hard bottleneck location problems. Discret. Appl. Math., 1(3):209-215, 1979. URL: https://doi.org/10.1016/0166-218X(79)90044-1.
  22. Tanmay Inamdar and Kasturi R. Varadarajan. Capacitated sum-of-radii clustering: An FPT approximation. In Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders, editors, Proceedings of the 28th Annual European Symposium on Algorithms (ESA), volume 173, pages 62:1-62:17, 2020. URL: https://doi.org/10.4230/LIPICS.ESA.2020.62.
  23. Kamal Jain, Mohammad Mahdian, and Amin Saberi. A new greedy approach for facility location problems. In John H. Reif, editor, Proceedings on 34th Annual ACM Symposium on Theory of Computing, May 19-21, 2002, Montréal, Québec, Canada, pages 731-740. ACM, 2002. URL: https://doi.org/10.1145/509907.510012.
  24. Ragesh Jaiswal, Amit Kumar, and Jatin Yadav. FPT approximation for capacitated sum of radii. In Venkatesan Guruswami, editor, 15th Innovations in Theoretical Computer Science Conference, ITCS 2024, January 30 to February 2, 2024, Berkeley, CA, USA, volume 287 of LIPIcs, pages 65:1-65:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024. URL: https://doi.org/10.4230/LIPICS.ITCS.2024.65.
  25. Clemens Rösner and Melanie Schmidt. Privacy preserving clustering with constraints. In Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella, editors, 45th International Colloquium on Automata, Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic, volume 107 of LIPIcs, pages 96:1-96:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. URL: https://doi.org/10.4230/LIPICS.ICALP.2018.96.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail