Succinct Data Structures for Baxter Permutation and Related Families

Authors Sankardeep Chakraborty , Seungbum Jo , Geunho Kim , Kunihiko Sadakane



PDF
Thumbnail PDF

File

LIPIcs.ISAAC.2024.17.pdf
  • Filesize: 0.98 MB
  • 17 pages

Document Identifiers

Author Details

Sankardeep Chakraborty
  • The University of Tokyo, Japan
Seungbum Jo
  • Chungnam National University, Daejeon, Republic of Korea
Geunho Kim
  • Pohang University of Science and Technology, Republic of Korea
Kunihiko Sadakane
  • The University of Tokyo, Japan

Cite As Get BibTex

Sankardeep Chakraborty, Seungbum Jo, Geunho Kim, and Kunihiko Sadakane. Succinct Data Structures for Baxter Permutation and Related Families. In 35th International Symposium on Algorithms and Computation (ISAAC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 322, pp. 17:1-17:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024) https://doi.org/10.4230/LIPIcs.ISAAC.2024.17

Abstract

A permutation π: [n] → [n] is a Baxter permutation if and only if it does not contain either of the patterns 2-41-3 and 3-14-2. Baxter permutations are one of the most widely studied subclasses of general permutation due to their connections with various combinatorial objects such as plane bipolar orientations and mosaic floorplans, etc. In this paper, we introduce a novel succinct representation (i.e., using o(n) additional bits from their information-theoretical lower bounds) for Baxter permutations of size n that supports π(i) and π^{-1}(j) queries for any i ∈ [n] in O(f₁(n)) and O(f₂(n)) time, respectively. Here, f₁(n) and f₂(n) are arbitrary increasing functions that satisfy the conditions ω(log n) and ω(log² n), respectively. This stands out as the first succinct representation with sub-linear worst-case query times for Baxter permutations. The main idea is to traverse the Cartesian tree on the permutation using a simple yet elegant two-stack algorithm which traverses the nodes in ascending order of their corresponding labels and stores the necessary information throughout the algorithm. 
Additionally, we consider a subclass of Baxter permutations called separable permutations, which do not contain either of the patterns 2-4-1-3 and 3-1-4-2. In this paper, we provide the first succinct representation of the separable permutation ρ: [n] → [n] of size n that supports both ρ(i) and ρ^{-1}(j) queries in O(1) time. In particular, this result circumvents Golynski’s [SODA 2009] lower bound result for trade-offs between redundancy and ρ(i) and ρ^{-1}(j) queries. 
Moreover, as applications of these permutations with the queries, we also introduce the first succinct representations for mosaic/slicing floorplans, and plane bipolar orientations, which can further support specific navigational queries on them efficiently.

Subject Classification

ACM Subject Classification
  • Theory of computation → Data structures design and analysis
Keywords
  • Succinct data structure
  • Baxter permutation
  • Mosaic floorplan
  • Plane bipolar orientation

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Eyal Ackerman, Gill Barequet, and Ron Y. Pinter. A bijection between permutations and floorplans, and its applications. Discret. Appl. Math., 154(12):1674-1684, 2006. URL: https://doi.org/10.1016/J.DAM.2006.03.018.
  2. Glen Baxter. On fixed points of the composite of commuting functions. Proceedings of the American Mathematical Society, 15(6):851-855, 1964. Google Scholar
  3. Djamal Belazzougui and Gonzalo Navarro. Optimal lower and upper bounds for representing sequences. ACM Transactions on Algorithms (TALG), 11(4):1-21, 2015. URL: https://doi.org/10.1145/2629339.
  4. Guy E. Blelloch and Arash Farzan. Succinct representations of separable graphs. In CPM, volume 6129 of Lecture Notes in Computer Science, pages 138-150. Springer, 2010. URL: https://doi.org/10.1007/978-3-642-13509-5_13.
  5. Miklós Bóna. Combinatorics of Permutations, Second Edition. Discrete mathematics and its applications. CRC Press, 2012. Google Scholar
  6. Nicolas Bonichon, Mireille Bousquet-Mélou, and Éric Fusy. Baxter permutations and plane bipolar orientations. Electron. Notes Discret. Math., 31:69-74, 2008. URL: https://doi.org/10.1016/j.endm.2008.06.011.
  7. Prosenjit Bose, Jonathan F. Buss, and Anna Lubiw. Pattern matching for permutations. Inf. Process. Lett., 65(5):277-283, 1998. URL: https://doi.org/10.1016/S0020-0190(97)00209-3.
  8. Sankardeep Chakraborty, Seungbum Jo, Geunho Kim, and Kunihiko Sadakane. Succinct data structures for baxter permutation and related families, 2024. URL: https://arxiv.org/abs/2409.16650.
  9. Sankardeep Chakraborty, Seungbum Jo, Kunihiko Sadakane, and Srinivasa Rao Satti. Succinct data structures for bounded clique-width graphs. Discret. Appl. Math., 352:55-68, 2024. URL: https://doi.org/10.1016/J.DAM.2024.03.016.
  10. Richie Chih-Nan Chuang, Ashim Garg, Xin He, Ming-Yang Kao, and Hsueh-I Lu. Compact encodings of planar graphs via canonical orderings and multiple parentheses. In Automata, Languages and Programming: 25th International Colloquium, ICALP'98 Aalborg, Denmark, July 13-17, 1998 Proceedings 25, pages 118-129. Springer, 1998. URL: https://doi.org/10.1007/BFB0055046.
  11. Robert Cori, Serge Dulucq, and Gérard Viennot. Shuffle of parenthesis systems and baxter permutations. Journal of Combinatorial Theory, Series A, 43(1):1-22, 1986. URL: https://doi.org/10.1016/0097-3165(86)90018-X.
  12. Serge Dulucq and Olivier Guibert. Stack words, standard tableaux and baxter permutations. Discrete Mathematics, 157(1-3):91-106, 1996. URL: https://doi.org/10.1016/S0012-365X(96)83009-3.
  13. Serge Dulucq and Olivier Guibert. Baxter permutations. Discrete Mathematics, 180(1-3):143-156, 1998. URL: https://doi.org/10.1016/S0012-365X(97)00112-X.
  14. A. Farzan and J. I. Munro. A uniform paradigm to succinctly encode various families of trees. Algorithmica, 68(1):16-40, January 2014. URL: https://doi.org/10.1007/S00453-012-9664-0.
  15. Stefan Felsner, Éric Fusy, Marc Noy, and David Orden. Bijections for baxter families and related objects. J. Comb. Theory, Ser. A, 118(3):993-1020, 2011. URL: https://doi.org/10.1016/J.JCTA.2010.03.017.
  16. Johannes Fischer. Combined data structure for previous- and next-smaller-values. Theor. Comput. Sci., 412(22):2451-2456, 2011. URL: https://doi.org/10.1016/J.TCS.2011.01.036.
  17. Éric Fusy. Straight-line drawing of quadrangulations. In Michael Kaufmann and Dorothea Wagner, editors, Graph Drawing, 14th International Symposium, GD 2006, Karlsruhe, Germany, September 18-20, 2006. Revised Papers, volume 4372 of Lecture Notes in Computer Science, pages 234-239. Springer, 2006. URL: https://doi.org/10.1007/978-3-540-70904-6_23.
  18. Paweł Gawrychowski and Patrick K Nicholson. Optimal encodings for range top-k k, selection, and min-max. In Automata, Languages, and Programming: 42nd International Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part I 42, pages 593-604. Springer, 2015. URL: https://doi.org/10.1007/978-3-662-47672-7_48.
  19. Richard F. Geary, Naila Rahman, Rajeev Raman, and Venkatesh Raman. A simple optimal representation for balanced parentheses. Theoretical Computer Science, 368(3):231-246, 2006. Combinatorial Pattern Matching. URL: https://doi.org/10.1016/J.TCS.2006.09.014.
  20. Alexander Golynski. Cell probe lower bounds for succinct data structures. In Proceedings of the twentieth annual ACM-SIAM symposium on Discrete algorithms, pages 625-634. SIAM, 2009. URL: https://doi.org/10.1137/1.9781611973068.69.
  21. Roberto Grossi and Jeffrey Scott Vitter. Compressed suffix arrays and suffix trees with applications to text indexing and string matching. SIAM J. Comput., 35(2):378-407, 2005. URL: https://doi.org/10.1137/S0097539702402354.
  22. Bryan Dawei He. A simple optimal binary representation of mosaic floorplans and baxter permutations. Theoretical Computer Science, 532:40-50, 2014. URL: https://doi.org/10.1016/J.TCS.2013.05.007.
  23. Xianlong Hong, Gang Huang, Yici Cai, Jiangchun Gu, Sheqin Dong, Chung-Kuan Cheng, and Jun Gu. Corner block list: An effective and efficient topological representation of non-slicing floorplan. In IEEE/ACM International Conference on Computer Aided Design. ICCAD-2000. IEEE/ACM Digest of Technical Papers (Cat. No. 00CH37140), pages 8-12. IEEE, 2000. URL: https://doi.org/10.1109/ICCAD.2000.896442.
  24. Seungbum Jo and Geunho Kim. Space-efficient data structure for next/previous larger/smaller value queries. In LATIN, volume 13568 of Lecture Notes in Computer Science, pages 71-87. Springer, 2022. URL: https://doi.org/10.1007/978-3-031-20624-5_5.
  25. Thomas Lengauer. Combinatorial algorithms for integrated circuit layout. Springer Science & Business Media, 2012. Google Scholar
  26. J. I. Munro and V. Raman. Succinct representation of balanced parentheses and static trees. SIAM J. Comput., 31(3):762-776, 2001. URL: https://doi.org/10.1137/S0097539799364092.
  27. J Ian Munro, Rajeev Raman, Venkatesh Raman, et al. Succinct representations of permutations and functions. Theoretical Computer Science, 438:74-88, 2012. URL: https://doi.org/10.1016/J.TCS.2012.03.005.
  28. J Ian Munro and Venkatesh Raman. Succinct representation of balanced parentheses and static trees. SIAM Journal on Computing, 31(3):762-776, 2001. URL: https://doi.org/10.1137/S0097539799364092.
  29. Masahiro Nakano, Akisato Kimura, Takeshi Yamada, and Naonori Ueda. Baxter permutation process. Advances in Neural Information Processing Systems, 33:8648-8659, 2020. Google Scholar
  30. Gonzalo Navarro and Kunihiko Sadakane. Fully functional static and dynamic succinct trees. ACM Transactions on Algorithms (TALG), 10(3):1-39, 2014. URL: https://doi.org/10.1145/2601073.
  31. Rajeev Raman, Venkatesh Raman, and Srinivasa Rao Satti. Succinct indexable dictionaries with applications to encoding k-ary trees, prefix sums and multisets. ACM Transactions on Algorithms (TALG), 3(4):43-es, 2007. Google Scholar
  32. Zion Cien Shen and Chris CN Chu. Bounds on the number of slicing, mosaic, and general floorplans. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 22(10):1354-1361, 2003. URL: https://doi.org/10.1109/TCAD.2003.818136.
  33. Antoni A. Szepieniec and Ralph H. J. M. Otten. The genealogical approach to the layout problem. In DAC, pages 535-542. ACM/IEEE, 1980. URL: https://doi.org/10.1145/800139.804582.
  34. Roberto Tamassia and Ioannis G. Tollis. A unified approach a visibility representation of planar graphs. Discret. Comput. Geom., 1:321-341, 1986. URL: https://doi.org/10.1007/BF02187705.
  35. Jean Vuillemin. A unifying look at data structures. Communications of the ACM, 23(4):229-239, 1980. URL: https://doi.org/10.1145/358841.358852.
  36. Bo Yao, Hongyu Chen, Chung-Kuan Cheng, and Ronald L. Graham. Floorplan representations: Complexity and connections. ACM Trans. Design Autom. Electr. Syst., 8(1):55-80, 2003. URL: https://doi.org/10.1145/606603.606607.
  37. Xiaoke Zhu, Changwen Zhuang, and Y. Kajitani. A general packing algorithm based on single-sequence. In 2004 International Conference on Communications, Circuits and Systems, volume 2, pages 1257-1261 Vol.2, July 2004. URL: https://doi.org/10.1109/ICCCAS.2004.1346402.
  38. Changwen Zhuang, Xiaoke Zhu, Y. Takashima, S. Nakatake, and Y. Kajitani. An algorithm for checking slicing floorplan based on hpg and its application. In 2004 International Conference on Communications, Circuits and Systems (IEEE Cat. No.04EX914), volume 2, pages 1223-1227 Vol.2, 2004. URL: https://doi.org/10.1109/ICCCAS.2004.1346395.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail