Mimicking Networks for Constrained Multicuts in Hypergraphs

Authors Kyungjin Cho , Eunjin Oh



PDF
Thumbnail PDF

File

LIPIcs.ISAAC.2024.21.pdf
  • Filesize: 0.85 MB
  • 14 pages

Document Identifiers

Author Details

Kyungjin Cho
  • Department of Computer Science and Engineering, POSTECH, Pohang, Republic of Korea
Eunjin Oh
  • Department of Computer Science and Engineering, POSTECH, Pohang, Republic of Korea

Cite As Get BibTex

Kyungjin Cho and Eunjin Oh. Mimicking Networks for Constrained Multicuts in Hypergraphs. In 35th International Symposium on Algorithms and Computation (ISAAC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 322, pp. 21:1-21:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024) https://doi.org/10.4230/LIPIcs.ISAAC.2024.21

Abstract

In this paper, we study a multicut-mimicking network for a hypergraph over terminals T with a parameter c. It is a hypergraph preserving the minimum multicut values of any set of pairs over T where the value is at most c. This is a new variant of the multicut-mimicking network of a graph in [Wahlström ICALP'20], which introduces a parameter c and extends it to handle hypergraphs. Additionally, it is a natural extension of the connectivity-c mimicking network introduced by [Chalermsook et al. SODA'21] and [Jiang et al. ESA'22] that is a (hyper)graph preserving the minimum cut values between two subsets of terminals where the value is at most c.
We propose an algorithm for a hypergraph that returns a multicut-mimicking network over terminals T with a parameter c having |T|c^O(rlog c) hyperedges in p^{1+o(1)} + |T|(c^rlog n)^{Õ(rc)}⋅m time, where p and r are the total size and the rank, respectively, of the hypergraph.

Subject Classification

ACM Subject Classification
  • Theory of computation → Sparsification and spanners
Keywords
  • hyperedge multicut
  • vertex sparsification
  • parameterized complexity

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Charles J. Alpert and Andrew B. Kahng. Recent directions in netlist partitioning: A survey. Integration, 19(1-2):1-81, 1995. URL: https://doi.org/10.1016/0167-9260(95)00008-4.
  2. Nikhil Bansal, Ola Svensson, and Luca Trevisan. New notions and constructions of sparsification for graphs and hypergraphs. In Proceedings of the 60th Annual Symposium on Foundations of Computer Science (FOCS 2019), pages 910-928, 2019. URL: https://doi.org/10.1109/FOCS.2019.00059.
  3. Parinya Chalermsook, Syamantak Das, Yunbum Kook, Bundit Laekhanukit, Yang P. Liu, Richard Peng, Mark Sellke, and Daniel Vaz. Vertex sparsification for edge connectivity. In Proceedings of the 32nd ACM-SIAM Symposium on Discrete Algorithms (SODA 2021), pages 1206-1225, 2021. URL: https://doi.org/10.1137/1.9781611976465.74.
  4. Shiri Chechik and Christian Wulff-Nilsen. Near-optimal light spanners. ACM Transactions on Algorithms (TALG), 14(3):1-15, 2018. URL: https://doi.org/10.1145/3199607.
  5. Chandra Chekuri and Chao Xu. Minimum cuts and sparsification in hypergraphs. SIAM Journal on Computing, 47(6):2118-2156, 2018. URL: https://doi.org/10.1137/18M1163865.
  6. Yu Chen and Zihan Tan. On (1+ε)-approximate flow sparsifiers. In Proceedings of the 35th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2024), pages 1568-1605, 2024. URL: https://doi.org/10.1137/1.9781611977912.63.
  7. Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized algorithms, volume 4(8). Springer, 2015. URL: https://doi.org/10.1007/978-3-319-21275-3.
  8. Elias Dahlhaus, David S. Johnson, Christos H. Papadimitriou, Paul D. Seymour, and Mihalis Yannakakis. The complexity of multiterminal cuts. SIAM Journal on Computing, 23(4):864-894, 1994. URL: https://doi.org/10.1137/S0097539792225297.
  9. Arnold Filtser and Shay Solomon. The greedy spanner is existentially optimal. In Proceedings of the 35th ACM Symposium on Principles of Distributed Computing (PODC 2016), pages 9-17, 2016. URL: https://doi.org/10.1145/2933057.2933114.
  10. Han Jiang, Shang-En Huang, Thatchaphol Saranurak, and Tian Zhang. Vertex sparsifiers for hyperedge connectivity. In Proceedings of the 30th Annual European Symposium on Algorithms (ESA 2022), pages 70:1-70:13, 2022. URL: https://doi.org/10.4230/LIPICS.ESA.2022.70.
  11. Wenyu Jin and Xiaorui Sun. Fully dynamic s-t edge connectivity in subpolynomial time. In Proceedings of the 62nd Annual Symposium on Foundations of Computer Science (FOCS 2022), pages 861-872. IEEE, 2022. Google Scholar
  12. Jörg Hendrik Kappes, Markus Speth, Gerhard Reinelt, and Christoph Schnörr. Higher-order segmentation via multicuts. Computer Vision and Image Understanding, 143:104-119, 2016. URL: https://doi.org/10.1016/J.CVIU.2015.11.005.
  13. Michael Kapralov, Robert Krauthgamer, Jakab Tardos, and Yuichi Yoshida. Spectral hypergraph sparsifiers of nearly linear size. In Proceedings of the 62nd Annual Symposium on Foundations of Computer Science (FOCS 2022), pages 1159-1170, 2022. Google Scholar
  14. Stefan Kratsch and Magnus Wahlström. Representative sets and irrelevant vertices: New tools for kernelization. Journal of the ACM, 67(3):1-50, 2020. URL: https://doi.org/10.1145/3390887.
  15. Robert Krauthgamer and Ron Mosenzon. Exact flow sparsification requires unbounded size. In Proceedings of the 34th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2023), pages 2354-2367, 2023. URL: https://doi.org/10.1137/1.9781611977554.CH91.
  16. Yang P Liu. Vertex sparsification for edge connectivity in polynomial time. In Proceedings of the 14th Innovations in Theoretical Computer Science Conference (ITCS 2023), pages 83:1-83:15, 2023. URL: https://doi.org/10.4230/LIPICS.ITCS.2023.83.
  17. Daniel Lokshtanov, Pranabendu Misra, Fahad Panolan, and Saket Saurabh. Deterministic truncation of linear matroids. ACM Transactions on Algorithms (TALG), 14(2):1-20, 2018. URL: https://doi.org/10.1145/3170444.
  18. Yaowei Long and Thatchaphol Saranurak. Near-optimal deterministic vertex-failure connectivity oracles. In Proceedings of the 63rd Annual Symposium on Foundations of Computer Science (FOCS 2022), pages 1002-1010, 2022. URL: https://doi.org/10.1109/FOCS54457.2022.00098.
  19. Anand Louis and Yury Makarychev. Approximation algorithms for hypergraph small set expansion and small set vertex expansion. Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, page 339, 2014. Google Scholar
  20. Dániel Marx. Parameterized graph separation problems. Theoretical Computer Science, 351(3):394-406, 2006. URL: https://doi.org/10.1016/J.TCS.2005.10.007.
  21. Dániel Marx. A parameterized view on matroid optimization problems. Theoretical Computer Science, 410(44):4471-4479, 2009. URL: https://doi.org/10.1016/J.TCS.2009.07.027.
  22. James Oxley. Matroid theory. In Handbook of the Tutte Polynomial and Related Topics, pages 44-85. Chapman and Hall/CRC, 2022. Google Scholar
  23. Muhammet Mustafa Ozdal and Cevdet Aykanat. Hypergraph models and algorithms for data-pattern-based clustering. Data Mining and Knowledge Discovery, 9:29-57, 2004. URL: https://doi.org/10.1023/B:DAMI.0000026903.59233.2A.
  24. Magnus Wahlström. Quasipolynomial multicut-mimicking networks and kernels for multiway cut problems. ACM Transactions on Algorithms (TALG), 18(2):1-19, 2022. URL: https://doi.org/10.1145/3501304.
  25. Zi-Ke Zhang and Chuang Liu. A hypergraph model of social tagging networks. Journal of Statistical Mechanics: Theory and Experiment, 2010(10):P10005, 2010. Google Scholar
  26. Alexander Aleksandrovich Zykov. Hypergraphs, volume 29(6). IOP Publishing, 1974. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail