LIPIcs.ISAAC.2024.21.pdf
- Filesize: 0.85 MB
- 14 pages
In this paper, we study a multicut-mimicking network for a hypergraph over terminals T with a parameter c. It is a hypergraph preserving the minimum multicut values of any set of pairs over T where the value is at most c. This is a new variant of the multicut-mimicking network of a graph in [Wahlström ICALP'20], which introduces a parameter c and extends it to handle hypergraphs. Additionally, it is a natural extension of the connectivity-c mimicking network introduced by [Chalermsook et al. SODA'21] and [Jiang et al. ESA'22] that is a (hyper)graph preserving the minimum cut values between two subsets of terminals where the value is at most c. We propose an algorithm for a hypergraph that returns a multicut-mimicking network over terminals T with a parameter c having |T|c^O(rlog c) hyperedges in p^{1+o(1)} + |T|(c^rlog n)^{Õ(rc)}⋅m time, where p and r are the total size and the rank, respectively, of the hypergraph.
Feedback for Dagstuhl Publishing