Simple Realizability of Abstract Topological Graphs

Authors Giordano Da Lozzo , Walter Didimo , Fabrizio Montecchiani , Miriam Münch , Maurizio Patrignani , Ignaz Rutter



PDF
Thumbnail PDF

File

LIPIcs.ISAAC.2024.23.pdf
  • Filesize: 1.31 MB
  • 15 pages

Document Identifiers

Author Details

Giordano Da Lozzo
  • Roma Tre University, Italy
Walter Didimo
  • University of Perugia, Italy
Fabrizio Montecchiani
  • University of Perugia, Italy
Miriam Münch
  • University of Passau, Germany
Maurizio Patrignani
  • Roma Tre University, Italy
Ignaz Rutter
  • University of Passau, Germany

Acknowledgements

Research started at the 1^{st} Summer Workshop on Graph Drawing, September 2021, Castiglione del Lago, Italy.

Cite As Get BibTex

Giordano Da Lozzo, Walter Didimo, Fabrizio Montecchiani, Miriam Münch, Maurizio Patrignani, and Ignaz Rutter. Simple Realizability of Abstract Topological Graphs. In 35th International Symposium on Algorithms and Computation (ISAAC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 322, pp. 23:1-23:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024) https://doi.org/10.4230/LIPIcs.ISAAC.2024.23

Abstract

An abstract topological graph (AT-graph) is a pair A = (G, X), where G = (V,E) is a graph and X ⊆ binom(E,2) is a set of pairs of edges of G. A realization of A is a drawing Γ_A of G in the plane such that any two edges e₁,e₂ of G cross in Γ_A if and only if (e₁,e₂) ∈ X; Γ_A is simple if any two edges intersect at most once (either at a common endpoint or at a proper crossing). The AT-graph Realizability (ATR) problem asks whether an input AT-graph admits a realization. The version of this problem that requires a simple realization is called Simple AT-graph Realizability (SATR). It is a classical result that both ATR and SATR are NP-complete [Kratochvíl, 1991; Kratochvíl and Matoušek, 1989].
In this paper, we study the SATR problem from a new structural perspective. More precisely, we consider the size λ(A) of the largest connected component of the crossing graph of any realization of A, i.e., the graph C(A) = (E, X). This parameter represents a natural way to measure the level of interplay among edge crossings. First, we prove that SATR is NP-complete when λ(A) ≥ 6. On the positive side, we give an optimal linear-time algorithm that solves SATR when λ(A) ≤ 3 and returns a simple realization if one exists. Our algorithm is based on several ingredients, in particular the reduction to a new embedding problem subject to constraints that require certain pairs of edges to alternate (in the rotation system), and a sequence of transformations that exploit the interplay between alternation constraints and the SPQR-tree and PQ-tree data structures to eventually arrive at a simpler embedding problem that can be solved with standard techniques.

Subject Classification

ACM Subject Classification
  • Theory of computation → Graph algorithms analysis
  • Mathematics of computing → Graph algorithms
  • Human-centered computing → Graph drawings
Keywords
  • Abstract Topological Graphs
  • SPQR-Trees
  • Synchronized PQ-Trees

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Thomas Bläsius, Simon D. Fink, and Ignaz Rutter. Synchronized planarity with applications to constrained planarity problems. ACM Trans. Algorithms, 19(4):34:1-34:23, 2023. URL: https://doi.org/10.1145/3607474.
  2. Thomas Bläsius and Ignaz Rutter. Simultaneous PQ-ordering with applications to constrained embedding problems. ACM Trans. Algorithms, 12(2):16:1-16:46, 2016. URL: https://doi.org/10.1145/2738054.
  3. Kellogg S. Booth and George S. Lueker. Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci., 13(3):335-379, 1976. URL: https://doi.org/10.1016/S0022-0000(76)80045-1.
  4. Kellogg Speed Booth. PQ-tree algorithms. University of California, Berkeley, 1975. Google Scholar
  5. Giordano Da Lozzo, Walter Didimo, Fabrizio Montecchiani, Miriam Münch, Maurizio Patrignani, and Ignaz Rutter. Simple realizability of abstract topological graphs. CoRR, abs/2409.20108, 2024. URL: https://doi.org/10.48550/arXiv.2409.20108.
  6. Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis. Graph Drawing: Algorithms for the Visualization of Graphs. Prentice-Hall, 1999. Google Scholar
  7. Giuseppe Di Battista and Roberto Tamassia. On-line maintenance of triconnected components with SPQR-trees. Algorithmica, 15(4):302-318, 1996. URL: https://doi.org/10.1007/BF01961541.
  8. Giuseppe Di Battista and Roberto Tamassia. On-line planarity testing. SIAM J. Comput., 25(5):956-997, 1996. URL: https://doi.org/10.1137/S0097539794280736.
  9. Walter Didimo, Giuseppe Liotta, and Fabrizio Montecchiani. A survey on graph drawing beyond planarity. ACM Comput. Surv., 52(1):4:1-4:37, 2019. URL: https://doi.org/10.1145/3301281.
  10. Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics. Springer, 2012. Google Scholar
  11. Elisabeth Gassner, Michael Jünger, Merijam Percan, Marcus Schaefer, and Michael Schulz. Simultaneous graph embeddings with fixed edges. In Fedor V. Fomin, editor, 32nd International Workshop on Graph-Theoretic Concepts in Computer Science, WG 2006, volume 4271 of Lecture Notes in Computer Science, pages 325-335. Springer, 2006. URL: https://doi.org/10.1007/11917496_29.
  12. Jacob E. Goodman and Joseph O'Rourke, editors. Handbook of Discrete and Computational Geometry, Second Edition. Chapman and Hall/CRC, 2004. URL: https://doi.org/10.1201/9781420035315.
  13. Carsten Gutwenger, Karsten Klein, and Petra Mutzel. Planarity testing and optimal edge insertion with embedding constraints. J. Graph Algorithms Appl., 12(1):73-95, 2008. URL: https://doi.org/10.7155/JGAA.00160.
  14. Seok-Hee Hong. Beyond planar graphs: Introduction. In Seok-Hee Hong and Takeshi Tokuyama, editors, Beyond Planar Graphs, Communications of NII Shonan Meetings, pages 1-9. Springer, 2020. URL: https://doi.org/10.1007/978-981-15-6533-5_1.
  15. John E. Hopcroft and Robert Endre Tarjan. Efficient planarity testing. J. ACM, 21(4):549-568, 1974. URL: https://doi.org/10.1145/321850.321852.
  16. Jan Kratochvíl. String graphs. II. Recognizing string graphs is NP-hard. J. Comb. Theory, Ser. B, 52(1):67-78, 1991. URL: https://doi.org/10.1016/0095-8956(91)90091-W.
  17. Jan Kratochvíl. A special planar satisfiability problem and a consequence of its NP-completeness. Discrete Applied Mathematics, 52(3):233-252, 1994. URL: https://doi.org/10.1016/0166-218X(94)90143-0.
  18. Jan Kratochvíl, Anna Lubiw, and Jaroslav Nesetril. Noncrossing subgraphs in topological layouts. SIAM J. Discret. Math., 4(2):223-244, 1991. URL: https://doi.org/10.1137/0404022.
  19. Jan Kratochvíl and Jiří Matoušek. NP-hardness results for intersection graphs. Commentationes Mathematicae Universitatis Carolinae, 30(4):761-773, 1989. URL: http://eudml.org/doc/17790.
  20. Jan Kratochvíl and Jirí Matousek. Intersection graphs of segments. J. Comb. Theory, Ser. B, 62(2):289-315, 1994. URL: https://doi.org/10.1006/JCTB.1994.1071.
  21. Jan Kyncl. Simple realizability of complete abstract topological graphs in P. Discret. Comput. Geom., 45(3):383-399, 2011. URL: https://doi.org/10.1007/S00454-010-9320-X.
  22. Jan Kyncl. Simple realizability of complete abstract topological graphs simplified. Discret. Comput. Geom., 64(1):1-27, 2020. URL: https://doi.org/10.1007/S00454-020-00204-0.
  23. Marcus Schaefer. Toward a theory of planarity: Hanani-tutte and planarity variants. J. Graph Algorithms Appl., 17(4):367-440, 2013. URL: https://doi.org/10.7155/JGAA.00298.
  24. Marcus Schaefer, Eric Sedgwick, and Daniel Stefankovic. Recognizing string graphs in NP. J. Comput. Syst. Sci., 67(2):365-380, 2003. URL: https://doi.org/10.1016/S0022-0000(03)00045-X.
  25. Marcus Schaefer and Daniel Stefankovic. Decidability of string graphs. J. Comput. Syst. Sci., 68(2):319-334, 2004. URL: https://doi.org/10.1016/J.JCSS.2003.07.002.
  26. Ileana Streinu, Károly Bezdek, János Pach, Tamal K. Dey, Jianer Chen, Dina Kravets, Nancy M. Amato, and W. Randolph Franklin. Discrete and computational geometry. In Kenneth H. Rosen, John G. Michaels, Jonathan L. Gross, Jerrold W. Grossman, and Douglas R. Shier, editors, Handbook of Discrete and Combinatorial Mathematics. CRC Press, 1999. URL: https://doi.org/10.1201/9781439832905.CH13.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail