Exact Algorithms for Clustered Planarity with Linear Saturators

Authors Giordano Da Lozzo , Robert Ganian , Siddharth Gupta , Bojan Mohar , Sebastian Ordyniak , Meirav Zehavi



PDF
Thumbnail PDF

File

LIPIcs.ISAAC.2024.24.pdf
  • Filesize: 1.1 MB
  • 16 pages

Document Identifiers

Author Details

Giordano Da Lozzo
  • Roma Tre University, Italy
Robert Ganian
  • Algorithms and Complexity Group, TU Wien, Austria
Siddharth Gupta
  • BITS Pilani, K K Birla Goa Campus, India
Bojan Mohar
  • Department of Mathematics, Simon Fraser University, Burnaby, Canada
Sebastian Ordyniak
  • University of Leeds, UK
Meirav Zehavi
  • Ben-Gurion University of the Negev, Beer-Sheva, Israel

Acknowledgements

This research started at the Dagstuhl Seminar: New Frontiers of Parameterized Complexity in Graph Drawing; seminar number: 23162; April 16-21, 2023.

Cite As Get BibTex

Giordano Da Lozzo, Robert Ganian, Siddharth Gupta, Bojan Mohar, Sebastian Ordyniak, and Meirav Zehavi. Exact Algorithms for Clustered Planarity with Linear Saturators. In 35th International Symposium on Algorithms and Computation (ISAAC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 322, pp. 24:1-24:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024) https://doi.org/10.4230/LIPIcs.ISAAC.2024.24

Abstract

We study Clustered Planarity with Linear Saturators, which is the problem of augmenting an n-vertex planar graph whose vertices are partitioned into independent sets (called clusters) with paths - one for each cluster - that connect all the vertices in each cluster while maintaining planarity. We show that the problem can be solved in time 2^𝒪(n) for both the variable and fixed embedding case. Moreover, we show that it can be solved in subexponential time 2^𝒪(√n log n) in the fixed embedding case if additionally the input graph is connected. The latter time complexity is tight under the Exponential-Time Hypothesis. We also show that n can be replaced with the vertex cover number of the input graph by providing a linear (resp. polynomial) kernel for the variable-embedding (resp. fixed-embedding) case; these results contrast the NP-hardness of the problem on graphs of bounded treewidth (and even on trees). Finally, we complement known lower bounds for the problem by showing that Clustered Planarity with Linear Saturators is NP-hard even when the number of clusters is at most 3, thus excluding the algorithmic use of the number of clusters as a parameter.

Subject Classification

ACM Subject Classification
  • Theory of computation → Fixed parameter tractability
  • Theory of computation → Computational geometry
  • Mathematics of computing → Graph algorithms
Keywords
  • Clustered planarity
  • independent c-graphs
  • path saturation
  • graph drawing

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Greg Aloupis, Luis Barba, Paz Carmi, Vida Dujmovic, Fabrizio Frati, and Pat Morin. Compatible connectivity augmentation of planar disconnected graphs. Discret. Comput. Geom., 54(2):459-480, 2015. URL: https://doi.org/10.1007/S00454-015-9716-8.
  2. Patrizio Angelini and Giordano Da Lozzo. Clustered planarity with pipes. Algorithmica, 81(6):2484-2526, 2019. URL: https://doi.org/10.1007/S00453-018-00541-W.
  3. Patrizio Angelini and Giordano Da Lozzo. Beyond clustered planar graphs. In Seok-Hee Hong and Takeshi Tokuyama, editors, Beyond Planar Graphs, Communications of NII Shonan Meetings, pages 211-235. Springer, 2020. URL: https://doi.org/10.1007/978-981-15-6533-5_12.
  4. Patrizio Angelini, Giordano Da Lozzo, Giuseppe Di Battista, Fabrizio Frati, Maurizio Patrignani, and Ignaz Rutter. Intersection-link representations of graphs. J. Graph Algorithms Appl., 21(4):731-755, 2017. URL: https://doi.org/10.7155/JGAA.00437.
  5. Patrizio Angelini, Giordano Da Lozzo, Giuseppe Di Battista, Fabrizio Frati, and Maurizio Patrignani. 2-Level quasi-planarity or how caterpillars climb (SPQR-)trees. In Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 2779-2798. SIAM, 2021. URL: https://doi.org/10.1137/1.9781611976465.165.
  6. Patrizio Angelini, Giordano Da Lozzo, Giuseppe Di Battista, Fabrizio Frati, Maurizio Patrignani, and Vincenzo Roselli. Relaxing the constraints of clustered planarity. Comput. Geom., 48(2):42-75, 2015. URL: https://doi.org/10.1016/J.COMGEO.2014.08.001.
  7. Patrizio Angelini, Giordano Da Lozzo, Giuseppe Di Battista, Fabrizio Frati, and Vincenzo Roselli. The importance of being proper: (in clustered-level planarity and T-level planarity). Theor. Comput. Sci., 571:1-9, 2015. URL: https://doi.org/10.1016/J.TCS.2014.12.019.
  8. Thomas Bläsius, Simon D. Fink, and Ignaz Rutter. Synchronized planarity with applications to constrained planarity problems. ACM Trans. Algorithms, 19(4):34:1-34:23, 2023. URL: https://doi.org/10.1145/3607474.
  9. Thomas Bläsius and Ignaz Rutter. A new perspective on clustered planarity as a combinatorial embedding problem. Theor. Comput. Sci., 609:306-315, 2016. URL: https://doi.org/10.1016/J.TCS.2015.10.011.
  10. Ulrik Brandes and Jürgen Lerner. Visual analysis of controversy in user-generated encyclopedias. Inf. Vis., 7(1):34-48, 2008. URL: https://doi.org/10.1057/PALGRAVE.IVS.9500171.
  11. Markus Chimani, Giuseppe Di Battista, Fabrizio Frati, and Karsten Klein. Advances on testing c-planarity of embedded flat clustered graphs. Int. J. Found. Comput. Sci., 30(2):197-230, 2019. URL: https://doi.org/10.1142/S0129054119500011.
  12. Markus Chimani, Carsten Gutwenger, Petra Mutzel, and Christian Wolf. Inserting a vertex into a planar graph. In Claire Mathieu, editor, Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2009, New York, NY, USA, January 4-6, 2009, pages 375-383. SIAM, 2009. URL: https://doi.org/10.1137/1.9781611973068.42.
  13. Markus Chimani and Petr Hlinený. Inserting multiple edges into a planar graph. In Sándor P. Fekete and Anna Lubiw, editors, 32nd International Symposium on Computational Geometry, SoCG 2016, June 14-18, 2016, Boston, MA, USA, volume 51 of LIPIcs, pages 30:1-30:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. URL: https://doi.org/10.4230/LIPICS.SOCG.2016.30.
  14. Markus Chimani and Karsten Klein. Shrinking the search space for clustered planarity. In Walter Didimo and Maurizio Patrignani, editors, Graph Drawing - 20th International Symposium, GD 2012, Redmond, WA, USA, September 19-21, 2012, Revised Selected Papers, volume 7704 of Lecture Notes in Computer Science, pages 90-101. Springer, 2012. URL: https://doi.org/10.1007/978-3-642-36763-2_9.
  15. Pier Francesco Cortese and Giuseppe Di Battista. Clustered planarity. In Joseph S. B. Mitchell and Günter Rote, editors, Proceedings of the 21st ACM Symposium on Computational Geometry, Pisa, Italy, June 6-8, 2005, pages 32-34. ACM, 2005. URL: https://doi.org/10.1145/1064092.1064093.
  16. Pier Francesco Cortese, Giuseppe Di Battista, Fabrizio Frati, Maurizio Patrignani, and Maurizio Pizzonia. C-planarity of c-connected clustered graphs. J. Graph Algorithms Appl., 12(2):225-262, 2008. URL: https://doi.org/10.7155/JGAA.00165.
  17. Pier Francesco Cortese and Maurizio Patrignani. Clustered planarity = flat clustered planarity. In Therese Biedl and Andreas Kerren, editors, Graph Drawing and Network Visualization - 26th International Symposium, GD 2018, Barcelona, Spain, September 26-28, 2018, Proceedings, volume 11282 of Lecture Notes in Computer Science, pages 23-38. Springer, 2018. URL: https://doi.org/10.1007/978-3-030-04414-5_2.
  18. Giordano Da Lozzo, David Eppstein, Michael T. Goodrich, and Siddharth Gupta. Subexponential-time and FPT algorithms for embedded flat clustered planarity. In Andreas Brandstädt, Ekkehard Köhler, and Klaus Meer, editors, Graph-Theoretic Concepts in Computer Science - 44th International Workshop, WG 2018, Cottbus, Germany, June 27-29, 2018, Proceedings, volume 11159 of Lecture Notes in Computer Science, pages 111-124. Springer, 2018. URL: https://doi.org/10.1007/978-3-030-00256-5_10.
  19. Giordano Da Lozzo, David Eppstein, Michael T. Goodrich, and Siddharth Gupta. C-planarity testing of embedded clustered graphs with bounded dual carving-width. Algorithmica, 83(8):2471-2502, 2021. URL: https://doi.org/10.1007/S00453-021-00839-2.
  20. Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis. Graph Drawing: Algorithms for the Visualization of Graphs. Prentice-Hall, 1999. Google Scholar
  21. Giuseppe Di Battista and Fabrizio Frati. Efficient c-planarity testing for embedded flat clustered graphs with small faces. J. Graph Algorithms Appl., 13(3):349-378, 2009. URL: https://doi.org/10.7155/JGAA.00191.
  22. Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics. Springer, 2012. Google Scholar
  23. Qing-Wen Feng, Robert F. Cohen, and Peter Eades. Planarity for clustered graphs. In Paul G. Spirakis, editor, Algorithms - ESA '95, Third Annual European Symposium, Corfu, Greece, September 25-27, 1995, Proceedings, volume 979 of Lecture Notes in Computer Science, pages 213-226. Springer, 1995. URL: https://doi.org/10.1007/3-540-60313-1_145.
  24. Sergej Fialko and Petra Mutzel. A new approximation algorithm for the planar augmentation problem. In Howard J. Karloff, editor, Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, 25-27 January 1998, San Francisco, California, USA, pages 260-269. ACM/SIAM, 1998. URL: http://dl.acm.org/citation.cfm?id=314613.314714.
  25. F.V. Fomin, D. Lokshtanov, S. Saurabh, and M. Zehavi. Kernelization: Theory of Parameterized Preprocessing. Cambridge University Press, 2019. URL: https://books.google.at/books?id=s1N-DwAAQBAJ.
  26. Radoslav Fulek, Jan Kyncl, Igor Malinovic, and Dömötör Pálvölgyi. Clustered planarity testing revisited. Electron. J. Comb., 22(4):4, 2015. URL: https://doi.org/10.37236/5002.
  27. Radoslav Fulek and Csaba D. Tóth. Atomic embeddability, clustered planarity, and thickenability. J. ACM, 69(2):13:1-13:34, 2022. URL: https://doi.org/10.1145/3502264.
  28. Robert Ganian, Fabrizio Montecchiani, Martin Nöllenburg, Meirav Zehavi, and Liana Khazaliya. New frontiers of parameterized complexity in graph drawing (Dagstuhl Seminar 23162). Dagstuhl Reports, 13(4):58-97, 2023. URL: https://doi.org/10.4230/DAGREP.13.4.58.
  29. Michael T. Goodrich, George S. Lueker, and Jonathan Z. Sun. C-planarity of extrovert clustered graphs. In Patrick Healy and Nikola S. Nikolov, editors, Graph Drawing, 13th International Symposium, GD 2005, Limerick, Ireland, September 12-14, 2005, Revised Papers, volume 3843 of Lecture Notes in Computer Science, pages 211-222. Springer, 2005. URL: https://doi.org/10.1007/11618058_20.
  30. Carsten Gutwenger, Michael Jünger, Sebastian Leipert, Petra Mutzel, Merijam Percan, and René Weiskircher. Advances in c-planarity testing of clustered graphs. In Stephen G. Kobourov and Michael T. Goodrich, editors, Graph Drawing, 10th International Symposium, GD 2002, Irvine, CA, USA, August 26-28, 2002, Revised Papers, volume 2528 of Lecture Notes in Computer Science, pages 220-235. Springer, 2002. URL: https://doi.org/10.1007/3-540-36151-0_21.
  31. Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly exponential complexity? J. Comput. Syst. Sci., 63(4):512-530, 2001. URL: https://doi.org/10.1006/JCSS.2001.1774.
  32. Vít Jelínek, Eva Jelínková, Jan Kratochvíl, and Bernard Lidický. Clustered planarity: Embedded clustered graphs with two-component clusters. In Ioannis G. Tollis and Maurizio Patrignani, editors, Graph Drawing, 16th International Symposium, GD 2008, Heraklion, Crete, Greece, September 21-24, 2008. Revised Papers, volume 5417 of Lecture Notes in Computer Science, pages 121-132. Springer, 2008. URL: https://doi.org/10.1007/978-3-642-00219-9_13.
  33. Vít Jelínek, Ondrej Suchý, Marek Tesar, and Tomás Vyskocil. Clustered planarity: Clusters with few outgoing edges. In Ioannis G. Tollis and Maurizio Patrignani, editors, Graph Drawing, 16th International Symposium, GD 2008, Heraklion, Crete, Greece, September 21-24, 2008. Revised Papers, volume 5417 of Lecture Notes in Computer Science, pages 102-113. Springer, 2008. URL: https://doi.org/10.1007/978-3-642-00219-9_11.
  34. Eva Jelínková, Jan Kára, Jan Kratochvíl, Martin Pergel, Ondrej Suchý, and Tomás Vyskocil. Clustered planarity: Small clusters in cycles and eulerian graphs. J. Graph Algorithms Appl., 13(3):379-422, 2009. URL: https://doi.org/10.7155/JGAA.00192.
  35. Tomihisa Kamada and Satoru Kawai. A general framework for visualizing abstract objects and relations. ACM Trans. Graph., 10(1):1-39, 1991. URL: https://doi.org/10.1145/99902.99903.
  36. Goos Kant and Hans L. Bodlaender. Planar graph augmentation problems (extended abstract). In Frank K. H. A. Dehne, Jörg-Rüdiger Sack, and Nicola Santoro, editors, Algorithms and Data Structures, 2nd Workshop WADS '91, Ottawa, Canada, August 14-16, 1991, Proceedings, volume 519 of Lecture Notes in Computer Science, pages 286-298. Springer, 1991. URL: https://doi.org/10.1007/BFB0028270.
  37. Thomas Lengauer. Hierarchical planarity testing algorithms. J. ACM, 36(3):474-509, 1989. URL: https://doi.org/10.1145/65950.65952.
  38. Richard J Lipton and Robert Endre Tarjan. A separator theorem for planar graphs. SIAM Journal on Applied Mathematics, 36(2):177-189, 1979. Google Scholar
  39. Giordano Da Lozzo, Robert Ganian, Siddharth Gupta, Bojan Mohar, Sebastian Ordyniak, and Meirav Zehavi. Exact algorithms for clustered planarity with linear saturators, 2024. URL: https://arxiv.org/abs/2409.19410.
  40. Oliver Niggemann. Visual data mining of graph based data. PhD thesis, University of Paderborn, Germany, 2001. URL: http://ubdata.uni-paderborn.de/ediss/17/2001/niggeman/disserta.pdf.
  41. Renato Paiva, Genaína Nunes Rodrigues, Rodrigo Bonifácio, and Marcelo Ladeira. Exploring the combination of software visualization and data clustering in the software architecture recovery process. In Sascha Ossowski, editor, Proceedings of the 31st Annual ACM Symposium on Applied Computing, Pisa, Italy, April 4-8, 2016, pages 1309-1314. ACM, 2016. URL: https://doi.org/10.1145/2851613.2851765.
  42. Johannes A. La Poutré. Alpha-algorithms for incremental planarity testing (preliminary version). In Frank Thomson Leighton and Michael T. Goodrich, editors, Proceedings of the Twenty-Sixth Annual ACM Symposium on Theory of Computing, 23-25 May 1994, Montréal, Québec, Canada, pages 706-715. ACM, 1994. URL: https://doi.org/10.1145/195058.195439.
  43. Jamie Sneddon and C. Paul Bonnington. A note on obstructions to clustered planarity. Electron. J. Comb., 18(1), 2011. URL: https://doi.org/10.37236/646.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail