The Complexity of Geodesic Spanners Using Steiner Points

Authors Sarita de Berg , Tim Ophelders , Irene Parada , Frank Staals, Jules Wulms



PDF
Thumbnail PDF

File

LIPIcs.ISAAC.2024.25.pdf
  • Filesize: 1.13 MB
  • 15 pages

Document Identifiers

Author Details

Sarita de Berg
  • Department of Information and Computing Sciences, Utrecht University, The Netherlands
Tim Ophelders
  • Department of Information and Computing Sciences, Utrecht University, The Netherlands
  • Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands
Irene Parada
  • Department of Mathematics, Universitat Politècnica de Catalunya, Barcelona, Spain
Frank Staals
  • Department of Information and Computing Sciences, Utrecht University, The Netherlands
Jules Wulms
  • Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands

Acknowledgements

Work initiated at the 2023 AGA Workshop in Otterlo. We would like to thank Wouter Meulemans for his contributions in the initial phase of the project.

Cite As Get BibTex

Sarita de Berg, Tim Ophelders, Irene Parada, Frank Staals, and Jules Wulms. The Complexity of Geodesic Spanners Using Steiner Points. In 35th International Symposium on Algorithms and Computation (ISAAC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 322, pp. 25:1-25:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024) https://doi.org/10.4230/LIPIcs.ISAAC.2024.25

Abstract

A geometric t-spanner 𝒢 on a set S of n point sites in a metric space P is a subgraph of the complete graph on S such that for every pair of sites p,q the distance in 𝒢 is a most t times the distance d(p,q) in P. We call a connection between two sites a link. In some settings, such as when P is a simple polygon with m vertices and a link is a shortest path in P, links can consist of Θ (m) segments and thus have non-constant complexity. The spanner complexity is a measure of how compact a spanner is, which is equal to the sum of the complexities of all links in the spanner. In this paper, we study what happens if we are allowed to introduce k Steiner points to reduce the spanner complexity. We study such Steiner spanners in simple polygons, polygonal domains, and edge-weighted trees.
Surprisingly, we show that Steiner points have only limited utility. For a spanner that uses k Steiner points, we provide an Ω(nm/k) lower bound on the worst-case complexity of any (3-ε)-spanner, and an Ω(mn^{1/(t+1)}/k^{1/(t+1)}) lower bound on the worst-case complexity of any (t-ε)-spanner, for any constant ε ∈ (0,1) and integer constant t ≥ 2. These lower bounds hold in all settings. Additionally, we show NP-hardness for the problem of deciding whether a set of sites in a polygonal domain admits a 3-spanner with a given maximum complexity using k Steiner points.
On the positive side, for trees we show how to build a 2t-spanner that uses k Steiner points of complexity O(mn^{1/t}/k^{1/t} + n log (n/k)), for any integer t ≥ 1. We generalize this result to forests, and apply it to obtain a 2√2t-spanner in a simple polygon with total complexity O(mn^{1/t}(log k)^{1+1/t}/k^{1/t} + nlog² n). When a link in the spanner can be any path between two sites, we show how to improve the spanning ratio in a simple polygon to (2k+ε), for any constant ε ∈ (0,2k), and how to build a 6t-spanner in a polygonal domain with the same complexity.

Subject Classification

ACM Subject Classification
  • Theory of computation → Computational geometry
Keywords
  • spanner
  • simple polygon
  • polygonal domain
  • geodesic distance
  • complexity

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Mohammad Ali Abam, Marjan Adeli, Hamid Homapour, and Pooya Zafar Asadollahpoor. Geometric spanners for points inside a polygonal domain. In Proc. 31st International Symposium on Computational Geometry, SoCG, volume 34 of LIPIcs, pages 186-197. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015. URL: https://doi.org/10.4230/LIPICS.SOCG.2015.186.
  2. Mohammad Ali Abam, Mark de Berg, and Mohammad Javad Rezaei Seraji. Geodesic spanners for points on a polyhedral terrain. SIAM J. Comput., 48(6):1796-1810, 2019. URL: https://doi.org/10.1137/18M119358X.
  3. Khaled M. Alzoubi, Xiang-Yang Li, Yu Wang, Peng-Jun Wan, and Ophir Frieder. Geometric spanners for wireless ad hoc networks. IEEE Trans. Parallel Distributed Syst., 14(4):408-421, 2003. URL: https://doi.org/10.1109/TPDS.2003.1195412.
  4. Sunil Arya, Gautam Das, David M. Mount, Jeffrey S. Salowe, and Michiel H. M. Smid. Euclidean spanners: short, thin, and lanky. In Proc. 27th Annual ACM Symposium on Theory of Computing, STOC, pages 489-498. ACM, 1995. URL: https://doi.org/10.1145/225058.225191.
  5. Sujoy Bhore and Csaba D. Tóth. Light Euclidean Steiner spanners in the plane. In Proc. 37th International Symposium on Computational Geometry, SoCG, volume 189 of LIPIcs, pages 15:1-15:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPICS.SOCG.2021.15.
  6. Glencora Borradaile and David Eppstein. Near-linear-time deterministic plane Steiner spanners for well-spaced point sets. Comput. Geom., 49:8-16, 2015. URL: https://doi.org/10.1016/J.COMGEO.2015.04.005.
  7. Prosenjit Bose, Joachim Gudmundsson, and Michiel H. M. Smid. Constructing plane spanners of bounded degree and low weight. Algorithmica, 42(3-4):249-264, 2005. URL: https://doi.org/10.1007/S00453-005-1168-8.
  8. Prosenjit Bose and Michiel H. M. Smid. On plane geometric spanners: A survey and open problems. Comput. Geom., 46(7):818-830, 2013. URL: https://doi.org/10.1016/J.COMGEO.2013.04.002.
  9. T.-H. Hubert Chan, Anupam Gupta, Bruce M. Maggs, and Shuheng Zhou. On hierarchical routing in doubling metrics. ACM Trans. Algorithms, 12(4):55:1-55:22, 2016. URL: https://doi.org/10.1145/2915183.
  10. T.-H. Hubert Chan, Mingfei Li, Li Ning, and Shay Solomon. New doubling spanners: Better and simpler. SIAM J. Comput., 44(1):37-53, 2015. URL: https://doi.org/10.1137/130930984.
  11. Kenneth L. Clarkson. Approximation algorithms for shortest path motion planning. In Proc. 19th Annual ACM Symposium on Theory of Computing, STOC, pages 56-65. ACM, 1987. Google Scholar
  12. Vincent Cohen-Addad, Arnold Filtser, Philip N. Klein, and Hung Le. On light spanners, low-treewidth embeddings and efficient traversing in minor-free graphs. In Proc. 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS, pages 589-600. IEEE, 2020. URL: https://doi.org/10.1109/FOCS46700.2020.00061.
  13. Sarita de Berg, Tim Ophelders, Irene Parada, Frank Staals, and Jules Wulms. The complexity of geodesic spanners using steiner points, 2024. https://arxiv.org/abs/2402.12110, URL: https://doi.org/10.48550/arXiv.2402.12110.
  14. Sarita de Berg, Marc van Kreveld, and Frank Staals. The complexity of geodesic spanners. CoRR, abs/2303.02997, 2023. URL: https://arxiv.org/abs/2303.02997, URL: https://doi.org/10.48550/arXiv.2303.02997.
  15. Sarita de Berg, Marc J. van Kreveld, and Frank Staals. The complexity of geodesic spanners. In Proc. 39th International Symposium on Computational Geometry, SoCG, volume 258 of LIPIcs, pages 16:1-16:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPICS.SOCG.2023.16.
  16. Yefim Dinitz, Michael Elkin, and Shay Solomon. Shallow-low-light trees, and tight lower bounds for Euclidean spanners. In Proc. 49th Annual IEEE Symposium on Foundations of Computer Science, FOCS, pages 519-528, 2008. URL: https://doi.org/10.1109/FOCS.2008.24.
  17. Michael Elkin and Shay Solomon. Narrow-shallow-low-light trees with and without Steiner points. SIAM J. Discret. Math., 25(1):181-210, 2011. URL: https://doi.org/10.1137/090776147.
  18. Michael Elkin and Shay Solomon. Optimal Euclidean spanners: Really short, thin, and lanky. J. ACM, 62(5):35:1-35:45, 2015. URL: https://doi.org/10.1145/2819008.
  19. Lee-Ad Gottlieb, Aryeh Kontorovich, and Robert Krauthgamer. Efficient regression in metric spaces via approximate Lipschitz extension. IEEE Trans. Inf. Theory, 63(8):4838-4849, 2017. URL: https://doi.org/10.1109/TIT.2017.2713820.
  20. Lee-Ad Gottlieb and Liam Roditty. An optimal dynamic spanner for doubling metric spaces. In Proc. 16th Annual European Symposium on Algorithms, ESA, volume 5193 of LNCS, pages 478-489, 2008. URL: https://doi.org/10.1007/978-3-540-87744-8_40.
  21. Sariel Har-Peled and Manor Mendel. Fast construction of nets in low-dimensional metrics and their applications. SIAM J. Comput., 35(5):1148-1184, 2006. URL: https://doi.org/10.1137/S0097539704446281.
  22. Hung Le and Shay Solomon. Truly optimal Euclidean spanners. In Proc. 60th IEEE Annual Symposium on Foundations of Computer Science, FOCS, pages 1078-1100. IEEE Computer Society, 2019. URL: https://doi.org/10.1109/FOCS.2019.00069.
  23. Christos Levcopoulos, Giri Narasimhan, and Michiel H. M. Smid. Efficient algorithms for constructing fault-tolerant geometric spanners. In Proc. 13th Annual ACM Symposium on the Theory of Computing, STOC, pages 186-195. ACM, 1998. URL: https://doi.org/10.1145/276698.276734.
  24. Joseph S. B. Mitchell and Wolfgang Mulzer. Proximity algorithms. In Handbook of Discrete and Computational Geometry (3rd Edition), chapter 32, pages 849-874. Chapman & Hall/CRC, 2017. Google Scholar
  25. Giri Narasimhan and Michiel H. M. Smid. Geometric Spanner Networks. Cambridge University Press, 2007. Google Scholar
  26. Jan Remy, Reto Spöhel, and Andreas Weißl. On Euclidean vehicle routing with allocation. Comput. Geom., 43(4):357-376, 2010. URL: https://doi.org/10.1016/J.COMGEO.2008.12.009.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail