Coordinated Motion Planning: Multi-Agent Path Finding in a Densely Packed, Bounded Domain

Authors Sándor P. Fekete , Ramin Kosfeld , Peter Kramer , Jonas Neutzner , Christian Rieck , Christian Scheffer



PDF
Thumbnail PDF

File

LIPIcs.ISAAC.2024.29.pdf
  • Filesize: 0.92 MB
  • 15 pages

Document Identifiers

Author Details

Sándor P. Fekete
  • Department of Computer Science, TU Braunschweig, Germany
Ramin Kosfeld
  • Department of Computer Science, TU Braunschweig, Germany
Peter Kramer
  • Department of Computer Science, TU Braunschweig, Germany
Jonas Neutzner
  • Department of Computer Science, TU Braunschweig, Germany
Christian Rieck
  • Department of Computer Science, TU Braunschweig, Germany
Christian Scheffer
  • Department of Electrical Engineering and Computer Science, Bochum University of Applied Sciences, Germany

Cite As Get BibTex

Sándor P. Fekete, Ramin Kosfeld, Peter Kramer, Jonas Neutzner, Christian Rieck, and Christian Scheffer. Coordinated Motion Planning: Multi-Agent Path Finding in a Densely Packed, Bounded Domain. In 35th International Symposium on Algorithms and Computation (ISAAC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 322, pp. 29:1-29:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024) https://doi.org/10.4230/LIPIcs.ISAAC.2024.29

Abstract

We study Multi-Agent Path Finding for arrangements of labeled agents in the interior of a simply connected domain: Given a unique start and target position for each agent, the goal is to find a sequence of parallel, collision-free agent motions that minimizes the overall time (the makespan) until all agents have reached their respective targets. A natural case is that of a simply connected polygonal domain with axis-parallel boundaries and integer coordinates, i.e., a simple polyomino, which amounts to a simply connected union of lattice unit squares or cells. We focus on the particularly challenging setting of densely packed agents, i.e., one per cell, which strongly restricts the mobility of agents, and requires intricate coordination of motion.
We provide a variety of novel results for this problem, including (1) a characterization of polyominoes in which a reconfiguration plan is guaranteed to exist; (2) a characterization of shape parameters that induce worst-case bounds on the makespan; (3) a suite of algorithms to achieve asymptotically worst-case optimal performance with respect to the achievable stretch for cases with severely limited maneuverability. This corresponds to bounding the ratio between obtained makespan and the lower bound provided by the max-min distance between the start and target position of any agent and our shape parameters.
Our results extend findings by Demaine et al. [Erik D. Demaine et al., 2018; Erik D. Demaine et al., 2019] who investigated the problem for solid rectangular domains, and in the closely related field of Permutation Routing, as presented by Alpert et al. [H. Alpert et al., 2022] for convex pieces of grid graphs.

Subject Classification

ACM Subject Classification
  • Theory of computation → Computational geometry
  • Computing methodologies → Motion path planning
Keywords
  • multi-agent path finding
  • coordinated motion planning
  • bounded stretch
  • makespan
  • swarm robotics
  • reconfigurability
  • parallel sorting

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Aviv Adler, Mark de Berg, Dan Halperin, and Kiril Solovey. Efficient multi-robot motion planning for unlabeled discs in simple polygons. IEEE Transactions on Automation Science and Engineering, 12(4):1309-1317, 2015. URL: https://doi.org/10.1109/TASE.2015.2470096.
  2. Pankaj K. Agarwal, Tzvika Geft, Dan Halperin, and Erin Taylor. Multi-robot motion planning for unit discs with revolving areas. Computational Geometry: Theory and Applications, 114:102019, 2023. URL: https://doi.org/10.1016/J.COMGEO.2023.102019.
  3. Pankaj K. Agarwal, Dan Halperin, Micha Sharir, and Alex Steiger. Near-optimal min-sum motion planning for two square robots in a polygonal environment. In Symposium on Discrete Algorithms (SODA), pages 4942-4962, 2024. URL: https://doi.org/10.1137/1.9781611977912.176.
  4. Oswin Aichholzer, Erik D. Demaine, Matias Korman, Anna Lubiw, Jayson Lynch, Zuzana Masárová, Mikhail Rudoy, Virginia Vassilevska Williams, and Nicole Wein. Hardness of token swapping on trees. In European Symposium on Algorithms (ESA), pages 3:1-3:15, 2022. URL: https://doi.org/10.4230/LIPICS.ESA.2022.3.
  5. Noga Alon, Fan R. K. Chung, and Ronald L. Graham. Routing permutations on graphs via matchings. SIAM Journal on Discrete Mathematics, 7(3):513-530, 1994. URL: https://doi.org/10.1137/S0895480192236628.
  6. H. Alpert, R. Barnes, S. Bell, A. Mauro, N. Nevo, N. Tucker, and H. Yang. Routing by matching on convex pieces of grid graphs. Computational Geometry, 104:101862, 2022. URL: https://doi.org/10.1016/j.comgeo.2022.101862.
  7. Indranil Banerjee and Dana Richards. New results on routing via matchings on graphs. In Fundamentals of Computation Theory (FCT), pages 69-81, 2017. URL: https://doi.org/10.1007/978-3-662-55751-8_7.
  8. Bahareh Banyassady, Mark de Berg, Karl Bringmann, Kevin Buchin, Henning Fernau, Dan Halperin, Irina Kostitsyna, Yoshio Okamoto, and Stijn Slot. Unlabeled multi-robot motion planning with tighter separation bounds. In Symposium on Computational Geometry (SoCG), pages 12:1-12:16, 2022. URL: https://doi.org/10.4230/LIPICS.SOCG.2022.12.
  9. Marc Baumslag and Fred S. Annexstein. A unified framework for off-line permutation routing in parallel networks. Mathematical Systems Theory, 24(4):233-251, 1991. URL: https://doi.org/10.1007/BF02090401.
  10. Aaron T. Becker, Sándor P. Fekete, Phillip Keldenich, Matthias Konitzny, Lillian Lin, and Christian Scheffer. Coordinated motion planning: The video. In Symposium on Computational Geometry (SoCG), pages 74:1-74:6, 2018. URL: https://doi.org/10.4230/LIPICS.SOCG.2018.74.
  11. Soon-Jo Chung, Aditya Avinash Paranjape, Philip Dames, Shaojie Shen, and Vijay Kumar. A survey on aerial swarm robotics. IEEE Transactions on Robotics, 34(4):837-855, 2018. URL: https://doi.org/10.1109/TRO.2018.2857475.
  12. Loïc Crombez, Guilherme Dias da Fonseca, Yan Gerard, Aldo Gonzalez-Lorenzo, Pascal Lafourcade, and Luc Libralesso. Shadoks approach to low-makespan coordinated motion planning. ACM Journal of Experimental Algorithmics, 27:3.2:1-3.2:17, 2022. URL: https://doi.org/10.1145/3524133.
  13. Erik D. Demaine, Sándor P. Fekete, Phillip Keldenich, Henk Meijer, and Christian Scheffer. Coordinated motion planning: Reconfiguring a swarm of labeled robots with bounded stretch. In Symposium on Computational Geometry (SoCG), pages 29:1-29:15, 2018. URL: https://doi.org/10.4230/LIPICS.SOCG.2018.29.
  14. Erik D. Demaine, Sándor P. Fekete, Phillip Keldenich, Henk Meijer, and Christian Scheffer. Coordinated motion planning: Reconfiguring a swarm of labeled robots with bounded stretch. SIAM Journal on Computing, 48(6):1727-1762, 2019. URL: https://doi.org/10.1137/18M1194341.
  15. Eduard Eiben, Robert Ganian, and Iyad Kanj. The parameterized complexity of coordinated motion planning. In Symposium on Computational Geometry (SoCG), pages 28:1-28:16, 2023. URL: https://doi.org/10.4230/LIPICS.SOCG.2023.28.
  16. Sándor P. Fekete, Phillip Keldenich, Ramin Kosfeld, Christian Rieck, and Christian Scheffer. Connected coordinated motion planning with bounded stretch. Autonomous Agents and Multi-Agent Systems, 37(2):43, 2023. URL: https://doi.org/10.1007/S10458-023-09626-5.
  17. Sándor P. Fekete, Phillip Keldenich, Dominik Krupke, and Joseph S. B. Mitchell. Computing coordinated motion plans for robot swarms: The CG:SHOP challenge 2021. ACM Journal of Experimental Algorithmics, 27:3.1:1-3.1:12, 2022. URL: https://doi.org/10.1145/3532773.
  18. Sándor P. Fekete, Ramin Kosfeld, Peter Kramer, Jonas Neutzner, Christian Rieck, and Christian Scheffer. Coordinated motion planning: Multi-agent path finding in a densely packed, bounded domain, 2024. URL: https://doi.org/10.48550/arXiv.2409.06486.
  19. Sándor P. Fekete, Peter Kramer, Christian Rieck, Christian Scheffer, and Arne Schmidt. Efficiently reconfiguring a connected swarm of labeled robots. Autonomous Agents and Multi-Agent Systems, 38(2):39, 2024. URL: https://doi.org/10.1007/S10458-024-09668-3.
  20. Lenwood S. Heath and John Paul C. Vergara. Sorting by short swaps. Journal of Computational Biology, 10(5):775-789, 2003. URL: https://doi.org/10.1089/106652703322539097.
  21. John E. Hopcroft, Jacob T. Schwartz, and Micha Sharir. On the complexity of motion planning for multiple independent objects; PSPACE-hardness of the warehouseman’s problem. International Journal of Robotics Research, 3(4):76-88, 1984. URL: https://doi.org/10.1177/027836498400300405.
  22. John E. Hopcroft and Gordon T. Wilfong. Reducing multiple object motion planning to graph searching. SIAM Journal on Computing, 15(3):768-785, 1986. URL: https://doi.org/10.1137/0215055.
  23. Jun Kawahara, Toshiki Saitoh, and Ryo Yoshinaka. The time complexity of permutation routing via matching, token swapping and a variant. Journal of Graph Algorithms and Applications, 23(1):29-70, 2019. URL: https://doi.org/10.7155/jgaa.00483.
  24. Paul Liu, Jack Spalding-Jamieson, Brandon Zhang, and Da Wei Zheng. Coordinated motion planning through randomized k-opt. ACM Journal of Experimental Algorithmics, 27:3.4:1-3.4:9, 2022. URL: https://doi.org/10.1145/3524134.
  25. John M. Marberg and Eli Gafni. Sorting in constant number of row and column phases on a mesh. Algorithmica, 3:561-572, 1988. URL: https://doi.org/10.1007/BF01762132.
  26. Tillmann Miltzow, Lothar Narins, Yoshio Okamoto, Günter Rote, Antonis Thomas, and Takeaki Uno. Approximation and hardness of token swapping. In European Symposium on Algorithms (ESA), pages 66:1-66:15, 2016. URL: https://doi.org/10.4230/LIPICS.ESA.2016.66.
  27. Michael Rubenstein, Alejandro Cornejo, and Radhika Nagpal. Programmable self-assembly in a thousand-robot swarm. Science, 345(6198):795-799, 2014. URL: https://doi.org/10.1126/science.1254295.
  28. Erol Şahin and Alan F. T. Winfield. Special issue on swarm robotics. Swarm Intelligence, 2(2-4):69-72, 2008. URL: https://doi.org/10.1007/s11721-008-0020-6.
  29. Jacob T. Schwartz and Micha Sharir. On the piano movers' problem: III. Coordinating the motion of several independent bodies: the special case of circular bodies moving amidst polygonal barriers. International Journal of Robotics Research, 2(3):46-75, 1983. URL: https://doi.org/10.1177/027836498300200304.
  30. Kiril Solovey and Dan Halperin. On the hardness of unlabeled multi-robot motion planning. International Journal of Robotics Research, 35(14):1750-1759, 2016. URL: https://doi.org/10.1177/0278364916672311.
  31. Roni Stern, Nathan R. Sturtevant, Ariel Felner, Sven Koenig, Hang Ma, Thayne T. Walker, Jiaoyang Li, Dor Atzmon, Liron Cohen, T. K. Satish Kumar, Roman Barták, and Eli Boyarski. Multi-agent pathfinding: Definitions, variants, and benchmarks. In Symposium on Combinatorial Search (SOCS), pages 151-158, 2019. URL: https://doi.org/10.1609/SOCS.V10I1.18510.
  32. Peter R. Wurman, Raffaello D'Andrea, and Mick Mountz. Coordinating hundreds of cooperative, autonomous vehicles in warehouses. AI Magazine, 29(1):9-19, 2008. URL: https://doi.org/10.1609/aimag.v29i1.2082.
  33. Katsuhisa Yamanaka, Erik D. Demaine, Takehiro Ito, Jun Kawahara, Masashi Kiyomi, Yoshio Okamoto, Toshiki Saitoh, Akira Suzuki, Kei Uchizawa, and Takeaki Uno. Swapping labeled tokens on graphs. Theoretical Computer Science, 586:81-94, 2015. URL: https://doi.org/10.1016/J.TCS.2015.01.052.
  34. Hyeyun Yang and Antoine Vigneron. Coordinated path planning through local search and simulated annealing. ACM Journal of Experimental Algorithmics, 27:3.3:1-3.3:14, 2022. URL: https://doi.org/10.1145/3531224.
  35. Jingjin Yu and Daniela Rus. Pebble motion on graphs with rotations: Efficient feasibility tests and planning algorithms. In International Workshop on the Algorithmic Foundations of Robotics (WAFR), pages 729-746, 2015. URL: https://doi.org/10.1007/978-3-319-16595-0_42.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail