On the Complexity of Establishing Hereditary Graph Properties via Vertex Splitting

Authors Alexander Firbas , Manuel Sorge



PDF
Thumbnail PDF

File

LIPIcs.ISAAC.2024.30.pdf
  • Filesize: 1.11 MB
  • 15 pages

Document Identifiers

Author Details

Alexander Firbas
  • TU Wien, Austria
Manuel Sorge
  • TU Wien, Austria

Cite As Get BibTex

Alexander Firbas and Manuel Sorge. On the Complexity of Establishing Hereditary Graph Properties via Vertex Splitting. In 35th International Symposium on Algorithms and Computation (ISAAC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 322, pp. 30:1-30:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024) https://doi.org/10.4230/LIPIcs.ISAAC.2024.30

Abstract

Vertex splitting is a graph operation that replaces a vertex v with two nonadjacent new vertices u, w and makes each neighbor of v adjacent with one or both of u or w. Vertex splitting has been used in contexts from circuit design to statistical analysis. In this work, we generalize from specific vertex-splitting problems and systematically explore the computational complexity of achieving a given graph property Π by a limited number of vertex splits, formalized as the problem Π Vertex Splitting (Π-VS). We focus on hereditary graph properties and contribute four groups of results: First, we classify the classical complexity of Π-VS for graph properties characterized by forbidden subgraphs of order at most 3. Second, we provide a framework that allows one to show NP-completeness whenever one can construct a combination of a forbidden subgraph and prescribed vertex splits that satisfy certain conditions. Using this framework we show NP-completeness when Π is characterized by sufficiently well-connected forbidden subgraphs. In particular, we show that F-Free-VS is NP-complete for each biconnected graph F. Third, we study infinite families of forbidden subgraphs, obtaining NP-completeness for Bipartite-VS and Perfect-VS, contrasting the known result that Π-VS is in P if Π is the set of all cycles. Finally, we contribute to the study of the parameterized complexity of Π-VS with respect to the number of allowed splits. We show para-NP-hardness for K₃-Free-VS and derive an XP-algorithm when each vertex is only allowed to be split at most once, showing that the ability to split a vertex more than once is a key driver of the problems' complexity.

Subject Classification

ACM Subject Classification
  • Theory of computation → Problems, reductions and completeness
Keywords
  • NP-completeness
  • polynomial-time solvability
  • graph theory
  • graph transformation
  • graph modification

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Faisal N. Abu-Khzam, Judith Egan, Serge Gaspers, Alexis Shaw, and Peter Shaw. Cluster editing with vertex splitting. In Jon Lee, Giovanni Rinaldi, and Ali Ridha Mahjoub, editors, Proceedings of the 5th International Symposium of Combinatorial Optimization (ISCO 2018), volume 10856 of Lecture Notes in Computer Science, pages 1-13. Springer, 2018. URL: https://doi.org/10.1007/978-3-319-96151-4_1.
  2. Abu Reyan Ahmed, Stephen G. Kobourov, and Myroslav Kryven. An FPT algorithm for bipartite vertex splitting. In Patrizio Angelini and Reinhard von Hanxleden, editors, Proceedings of the 30th International Symposium Graph Drawing and Network Visualization (GD 2022), volume 13764 of Lecture Notes in Computer Science, pages 261-268. Springer, 2022. URL: https://doi.org/10.1007/978-3-031-22203-0_19.
  3. Emmanuel Arrighi, Matthias Bentert, Pål Grønås Drange, Blair D. Sullivan, and Petra Wolf. Cluster editing with overlapping communities. In Neeldhara Misra and Magnus Wahlström, editors, Proceedings of the 18th International Symposium on Parameterized and Exact Computation (IPEC 2023), volume 285 of LIPIcs, pages 2:1-2:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPICS.IPEC.2023.2.
  4. Jakob Baumann, Matthias Pfretzschner, and Ignaz Rutter. Parameterized complexity of vertex splitting to pathwidth at most 1. In Proceedings of the 49th International Workshop on Graph-Theoretic Concepts in Computer Science (WG 2023), volume 14093 of Lecture Notes in Computer Science, pages 30-43. Springer, 2023. URL: https://doi.org/10.1007/978-3-031-43380-1_3.
  5. Matthias Bentert, Alex Crane, Pål Grønås Drange, Felix Reidl, and Blair D. Sullivan. Correlation clustering with vertex splitting. In Hans L. Bodlaender, editor, Proceedings of the 19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024), volume 294 of LIPIcs, pages 8:1-8:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024. URL: https://doi.org/10.4230/LIPICS.SWAT.2024.8.
  6. Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-width I: tractable FO model checking. Journal of the ACM, 69(1):3:1-3:46, 2022. URL: https://doi.org/10.1145/3486655.
  7. Vera Chekan and Stefan Kratsch. Tight algorithmic applications of clique-width generalizations. In Jérôme Leroux, Sylvain Lombardy, and David Peleg, editors, Proceedings of the 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023), volume 272 of LIPIcs, pages 35:1-35:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPICS.MFCS.2023.35.
  8. Christophe Crespelle, Pål Grønås Drange, Fedor V. Fomin, and Petr A. Golovach. A survey of parameterized algorithms and the complexity of edge modification. Computer Science Review, 48:100556, 2023. URL: https://doi.org/10.1016/j.cosrev.2023.100556.
  9. A. Davoodi, R. Javadi, and B. Omoomi. Edge clique covering sum of graphs. Acta Mathematica Hungarica, 149(1):82-91, 2016. URL: https://doi.org/10.1007/s10474-016-0586-1.
  10. Peter Eades and Candido Ferreira Xavier de Mendonça Neto. Vertex splitting and tension-free layout. In Proceedings of the International Symposium on Graph Drawing (GD 1995), volume 1027 of Lecture Notes in Computer Science, pages 202-211. Springer, 1995. URL: https://doi.org/10.1007/BFb0021804.
  11. David Eppstein, Philipp Kindermann, Stephen Kobourov, Giuseppe Liotta, Anna Lubiw, Aude Maignan, Debajyoti Mondal, Hamideh Vosoughpour, Sue Whitesides, and Stephen Wismath. On the planar split thickness of graphs. Algorithmica, 80:977-994, 2018. URL: https://doi.org/10.1007/s00453-017-0328-y.
  12. Luérbio Faria, Celina M. H. de Figueiredo, and Candido Ferreira Xavier de Mendonça Neto. SPLITTING NUMBER is NP-complete. Discrete Applied Mathematics, 108(1-2):65-83, 2001. URL: https://doi.org/10.1016/S0166-218X(00)00220-1.
  13. Alexander Firbas. Establishing hereditary graph properties via vertex splitting. Master’s thesis, TU Wien, 2023. URL: https://doi.org/10.34726/hss.2023.103864.
  14. Alexander Firbas, Alexander Dobler, Fabian Holzer, Jakob Schafellner, Manuel Sorge, Anaïs Villedieu, and Monika Wißmann. The complexity of cluster vertex splitting and company. In Henning Fernau, Serge Gaspers, and Ralf Klasing, editors, Proceedings of the 49th International Conference on Current Trends in Theory and Practice of Computer Science (SOFSEM 2024), volume 14519 of Lecture Notes in Computer Science, pages 226-239. Springer, 2024. URL: https://doi.org/10.1007/978-3-031-52113-3_16.
  15. Alexander Firbas and Manuel Sorge. On the complexity of establishing hereditary graph properties via vertex splitting, 2024. https://arxiv.org/abs/2401.16296, URL: https://doi.org/10.48550/arXiv.2401.16296.
  16. Herbert Fleischner. Eulerian graphs and related topics. North-Holland, 1990. Google Scholar
  17. Martin Fürer. A natural generalization of bounded tree-width and bounded clique-width. In Alberto Pardo and Alfredo Viola, editors, Proceedings of the 11th Latin American Symposium on Theoretical Informatics (LATIN 2014), volume 8392 of Lecture Notes in Computer Science, pages 72-83. Springer, 2014. URL: https://doi.org/10.1007/978-3-642-54423-1_7.
  18. Leslie Ann Goldberg and Marc Roth. Parameterised and fine-grained subgraph counting, modulo 2. Algorithmica, 86(4):944-1005, 2024. URL: https://doi.org/10.1007/S00453-023-01178-0.
  19. Petr A. Golovach, Pim van 't Hof, and Daniël Paulusma. Obtaining planarity by contracting few edges. Theoretical Computer Science, 476:38-46, 2013. URL: https://doi.org/10.1016/j.tcs.2012.12.041.
  20. Jens Gramm, Jiong Guo, Falk Hüffner, Rolf Niedermeier, Hans-Peter Piepho, and Ramona Schmid. Algorithms for compact letter displays: Comparison and evaluation. Computational Statistics & Data Analysis, 52(2):725-736, 2007. URL: https://doi.org/10.1016/j.csda.2006.09.035.
  21. Sylvain Guillemot and Dániel Marx. A faster FPT algorithm for bipartite contraction. Information Processing Letters, 113(22-24):906-912, 2013. URL: https://doi.org/10.1016/j.ipl.2013.09.004.
  22. Chengwei Guo and Leizhen Cai. Obtaining split graphs by edge contraction. Theoretical Computer Science, 607:60-67, 2015. URL: https://doi.org/10.1016/j.tcs.2015.01.056.
  23. Pinar Heggernes, Pim van 't Hof, Daniel Lokshtanov, and Christophe Paul. Obtaining a bipartite graph by contracting few edges. SIAM Journal on Discrete Mathematics, 27(4):2143-2156, 2013. URL: https://doi.org/10.1137/130907392.
  24. Nathalie y Henr, Anastasia Bezerianos, and Jean-Daniel Fekete. Improving the readability of clustered social networks using node duplication. IEEE Transactions on Visualization and Computer Graphics, 14(6):1317-1324, 2008. URL: https://doi.org/10.1109/TVCG.2008.141.
  25. Anthony J. W. Hilton and C. Zhao. Vertex-splitting and chromatic index critical graphs. Discrete Applied Mathematics, 76(1-3):205-211, 1997. URL: https://doi.org/10.1016/S0166-218X(96)00125-4.
  26. Subhash Khot and Venkatesh Raman. Parameterized complexity of finding subgraphs with hereditary properties. Theoretical Computer Science, 289(2):997-1008, 2002. URL: https://doi.org/10.1016/S0304-3975(01)00414-5.
  27. John M. Lewis and Mihalis Yannakakis. The node-deletion problem for hereditary properties is NP-complete. Journal of Computer and System Sciences, 20(2):219-230, 1980. URL: https://doi.org/10.1016/0022-0000(80)90060-4.
  28. Matthias Mayer and Fikret Erçal. Genetic algorithms for vertex splitting in DAGs. In Proceedings of the 5th International Conference on Genetic Algorithms (ICGA 1993), page 646. Morgan Kaufmann, 1993. URL: https://scholarsmine.mst.edu/comsci_techreports/25/.
  29. George B. Mertzios and Derek G. Corneil. Vertex splitting and the recognition of trapezoid graphs. Discrete Applied Mathematics, 159(11):1131-1147, 2011. URL: https://doi.org/10.1016/j.dam.2011.03.023.
  30. Martin Nöllenburg, Manuel Sorge, Soeren Terziadis, Anaïs Villedieu, Hsiang-Yun Wu, and Jules Wulms. Planarizing graphs and their drawings by vertex splitting. In Proceedings of the 30th International Symposium on Graph Drawing and Network Visualization (GD 2022), pages 232-246, Cham, 2023. Springer International Publishing. URL: https://doi.org/10.1007/978-3-031-22203-0_17.
  31. Doowon Paik, Sudhakar M. Reddy, and Sartaj Sahni. Vertex splitting in dags and applications to partial scan designs and lossy circuits. International Journal of Foundations of Computer Science, 9(4):377-398, 1998. URL: https://doi.org/10.1142/S0129054198000301.
  32. Norbert Peyerimhoff, Marc Roth, Johannes Schmitt, Jakob Stix, Alina Vdovina, and Philip Wellnitz. Parameterized counting and Cayley graph expanders. SIAM Journal on Discrete Mathematics, 37(2):405-486, 2023. URL: https://doi.org/10.1137/22M1479804.
  33. W. T. Tutte. Connectivity in graphs. University of Toronto Press, 1966. Google Scholar
  34. Ryuhei Uehara. NP-complete problems on a 3-connected cubic planar graph and their applications. Tokyo Woman’s Christian University, Tokyo, Japan, Tech. Rep. TWCU-M-0004, 1996. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail