,
Manuel Sorge
Creative Commons Attribution 4.0 International license
Vertex splitting is a graph operation that replaces a vertex v with two nonadjacent new vertices u, w and makes each neighbor of v adjacent with one or both of u or w. Vertex splitting has been used in contexts from circuit design to statistical analysis. In this work, we generalize from specific vertex-splitting problems and systematically explore the computational complexity of achieving a given graph property Π by a limited number of vertex splits, formalized as the problem Π Vertex Splitting (Π-VS). We focus on hereditary graph properties and contribute four groups of results: First, we classify the classical complexity of Π-VS for graph properties characterized by forbidden subgraphs of order at most 3. Second, we provide a framework that allows one to show NP-completeness whenever one can construct a combination of a forbidden subgraph and prescribed vertex splits that satisfy certain conditions. Using this framework we show NP-completeness when Π is characterized by sufficiently well-connected forbidden subgraphs. In particular, we show that F-Free-VS is NP-complete for each biconnected graph F. Third, we study infinite families of forbidden subgraphs, obtaining NP-completeness for Bipartite-VS and Perfect-VS, contrasting the known result that Π-VS is in P if Π is the set of all cycles. Finally, we contribute to the study of the parameterized complexity of Π-VS with respect to the number of allowed splits. We show para-NP-hardness for K₃-Free-VS and derive an XP-algorithm when each vertex is only allowed to be split at most once, showing that the ability to split a vertex more than once is a key driver of the problems' complexity.
@InProceedings{firbas_et_al:LIPIcs.ISAAC.2024.30,
author = {Firbas, Alexander and Sorge, Manuel},
title = {{On the Complexity of Establishing Hereditary Graph Properties via Vertex Splitting}},
booktitle = {35th International Symposium on Algorithms and Computation (ISAAC 2024)},
pages = {30:1--30:15},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-354-6},
ISSN = {1868-8969},
year = {2024},
volume = {322},
editor = {Mestre, Juli\'{a}n and Wirth, Anthony},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2024.30},
URN = {urn:nbn:de:0030-drops-221572},
doi = {10.4230/LIPIcs.ISAAC.2024.30},
annote = {Keywords: NP-completeness, polynomial-time solvability, graph theory, graph transformation, graph modification}
}