When Can Cluster Deletion with Bounded Weights Be Solved Efficiently?

Authors Jaroslav Garvardt , Christian Komusiewicz , Nils Morawietz



PDF
Thumbnail PDF

File

LIPIcs.ISAAC.2024.32.pdf
  • Filesize: 0.75 MB
  • 17 pages

Document Identifiers

Author Details

Jaroslav Garvardt
  • Institute of Computer Science, Friedrich Schiller University Jena, Germany
Christian Komusiewicz
  • Institute of Computer Science, Friedrich Schiller University Jena, Germany
Nils Morawietz
  • Institute of Computer Science, Friedrich Schiller University Jena, Germany

Cite As Get BibTex

Jaroslav Garvardt, Christian Komusiewicz, and Nils Morawietz. When Can Cluster Deletion with Bounded Weights Be Solved Efficiently?. In 35th International Symposium on Algorithms and Computation (ISAAC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 322, pp. 32:1-32:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024) https://doi.org/10.4230/LIPIcs.ISAAC.2024.32

Abstract

In the NP-hard Weighted Cluster Deletion problem, the input is an undirected graph G = (V,E) and an edge-weight function ω: E → ℕ, and the task is to partition the vertex set V into cliques so that the total weight of edges in the cliques is maximized. Recently, it has been shown that Weighted Cluster Deletion is NP-hard on some graph classes where Cluster Deletion, the special case where every edge has unit weight, can be solved in polynomial time. We study the influence of the value t of the largest edge weight assigned by ω on the problem complexity for such graph classes. Our main results are that Weighted Cluster Deletion is fixed-parameter tractable with respect to t on graph classes whose graphs consist of well-separated clusters that are connected by a sparse periphery. Concrete examples for such classes are split graphs and graphs that are close to cluster graphs. We complement our results by strengthening previous hardness results for Weighted Cluster Deletion. For example, we show that Weighted Cluster Deletion is NP-hard on restricted subclasses of cographs even when every edge has weight 1 or 2.

Subject Classification

ACM Subject Classification
  • Theory of computation → Graph algorithms analysis
Keywords
  • Graph clustering
  • split graphs
  • cographs
  • parameterized complexity

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Sebastian Böcker and Jan Baumbach. Cluster editing. In Paola Bonizzoni, Vasco Brattka, and Benedikt Löwe, editors, Proceedings of the 9th Conference on Computability in Europe (CiE '13), volume 7921 of Lecture Notes in Computer Science, pages 33-44. Springer, 2013. URL: https://doi.org/10.1007/978-3-642-39053-1_5.
  2. Sebastian Böcker, Sebastian Briesemeister, Quang Bao Anh Bui, and Anke Truß. Going weighted: Parameterized algorithms for cluster editing. Theoretical Computer Science, 410(52):5467-5480, 2009. URL: https://doi.org/10.1016/J.TCS.2009.05.006.
  3. Sebastian Böcker and Peter Damaschke. Even faster parameterized cluster deletion and cluster editing. Information Processing Letters, 111(14):717-721, 2011. URL: https://doi.org/10.1016/J.IPL.2011.05.003.
  4. Flavia Bonomo, Guillermo Durán, Amedeo Napoli, and Mario Valencia-Pabon. A one-to-one correspondence between potential solutions of the cluster deletion problem and the minimum sum coloring problem, and its application to P₄-sparse graphs. Information Processing Letters, 115(6-8):600-603, 2015. URL: https://doi.org/10.1016/J.IPL.2015.02.007.
  5. Flavia Bonomo, Guillermo Durán, and Mario Valencia-Pabon. Complexity of the cluster deletion problem on subclasses of chordal graphs. Theoretical Computer Science, 600:59-69, 2015. URL: https://doi.org/10.1016/j.tcs.2015.07.001.
  6. Sharon Bruckner, Falk Hüffner, and Christian Komusiewicz. A graph modification approach for finding core-periphery structures in protein interaction networks. Algorithms for Molecular Biology, 10:16, 2015. URL: https://doi.org/10.1186/S13015-015-0043-7.
  7. Yixin Cao and Jianer Chen. Cluster editing: Kernelization based on edge cuts. Algorithmica, 64(1):152-169, 2012. URL: https://doi.org/10.1007/S00453-011-9595-1.
  8. Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015. URL: https://doi.org/10.1007/978-3-319-21275-3.
  9. Michael Dom, Daniel Lokshtanov, and Saket Saurabh. Kernelization lower bounds through colors and ids. ACM Transactions on Algorithms, 11(2):13:1-13:20, 2014. URL: https://doi.org/10.1145/2650261.
  10. Rodney G. Downey and Michael Ralph Fellows. Fundamentals of Parameterized Complexity. Springer Science & Business Media, 2013. Google Scholar
  11. Elaine M. Eschen and Xiaoqiang Wang. Algorithms for unipolar and generalized split graphs. Discrete Applied Mathematics, 162:195-201, 2014. URL: https://doi.org/10.1016/J.DAM.2013.08.011.
  12. Wen-Yu Gao and Hang Gao. 2k-vertex kernels for cluster deletion and strong triadic closure. Journal of Computer Science and Technology, 38:1431-1439, 2023. URL: https://doi.org/10.1007/s11390-023-1420-1.
  13. Yong Gao, Donovan R. Hare, and James Nastos. The cluster deletion problem for cographs. Discrete Mathematics, 313(23):2763-2771, 2013. URL: https://doi.org/10.1016/j.disc.2013.08.017.
  14. Jaroslav Garvardt, Nils Morawietz, André Nichterlein, and Mathias Weller. Graph clustering problems under the lens of parameterized local search. In Neeldhara Misra and Magnus Wahlström, editors, Proceedings of the 18th International Symposium on Parameterized and Exact Computation (IPEC '23), volume 285 of LIPIcs, pages 20:1-20:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPICS.IPEC.2023.20.
  15. Petr A. Golovach, Pinar Heggernes, Athanasios L. Konstantinidis, Paloma T. Lima, and Charis Papadopoulos. Parameterized aspects of strong subgraph closure. Algorithmica, 82(7):2006-2038, 2020. URL: https://doi.org/10.1007/S00453-020-00684-9.
  16. Niels Grüttemeier and Christian Komusiewicz. On the relation of strong triadic closure and cluster deletion. Algorithmica, 82(4):853-880, 2020. URL: https://doi.org/10.1007/S00453-019-00617-1.
  17. Jiong Guo, Christian Komusiewicz, Rolf Niedermeier, and Johannes Uhlmann. A more relaxed model for graph-based data clustering: s-plex cluster editing. SIAM Journal on Discrete Mathematics, 24(4):1662-1683, 2010. URL: https://doi.org/10.1137/090767285.
  18. Danny Hermelin, Stefan Kratsch, Karolina Soltys, Magnus Wahlström, and Xi Wu. A completeness theory for polynomial (Turing) kernelization. Algorithmica, 71(3):702-730, 2015. URL: https://doi.org/10.1007/S00453-014-9910-8.
  19. Giuseppe F. Italiano, Athanasios L. Konstantinidis, and Charis Papadopoulos. Structural parameterization of cluster deletion. In Chun-Cheng Lin, Bertrand M. T. Lin, and Giuseppe Liotta, editors, Proceedings of the 17th International Conference and Workshops on Algorithms and Computation (WALCOM '23), volume 13973 of Lecture Notes in Computer Science, pages 371-383. Springer, 2023. URL: https://doi.org/10.1007/978-3-031-27051-2_31.
  20. Klaus Jansen, Felix Land, and Kati Land. Bounding the running time of algorithms for scheduling and packing problems. SIAM J. Discret. Math., 30(1):343-366, 2016. URL: https://doi.org/10.1137/140952636.
  21. Christian Komusiewicz, Rolf Niedermeier, and Johannes Uhlmann. Deconstructing intractability - A multivariate complexity analysis of interval constrained coloring. Journal of Discrete Algorithms, 9(1):137-151, 2011. URL: https://doi.org/10.1016/J.JDA.2010.07.003.
  22. Christian Komusiewicz and Johannes Uhlmann. Cluster editing with locally bounded modifications. Discrete Applied Mathematics, 160(15):2259-2270, 2012. URL: https://doi.org/10.1016/J.DAM.2012.05.019.
  23. Athanasios L. Konstantinidis and Charis Papadopoulos. Cluster deletion on interval graphs and split related graphs. Algorithmica, 83(7):2018-2046, 2021. URL: https://doi.org/10.1007/s00453-021-00817-8.
  24. Harold W. Kuhn. The Hungarian Method for the Assignment Problem. In 50 Years of Integer Programming 1958-2008 - From the Early Years to the State-of-the-Art, pages 29-47. Springer, 2010. URL: https://doi.org/10.1007/978-3-540-68279-0_2.
  25. Sebastian Ochs. Cluster deletion on unit disk graphs. Master’s thesis, Philipps-Universität Marburg, 2023. URL: https://www.fmi.uni-jena.de/fmi_femedia/fakultaet/institute-und-abteilungen/informatik/algorithm-engineering/master-thesis-sebastian-ochs.pdf.
  26. Ron Shamir, Roded Sharan, and Dekel Tsur. Cluster graph modification problems. Discrete Applied Mathematics, 144(1-2):173-182, 2004. URL: https://doi.org/10.1016/J.DAM.2004.01.007.
  27. Dekel Tsur. Faster parameterized algorithm for cluster vertex deletion. Theory of Computing Systems, 65(2):323-343, 2021. URL: https://doi.org/10.1007/s00224-020-10005-w.
  28. Dekel Tsur. Cluster deletion revisited. Information Processing Letters, 173:106171, 2022. URL: https://doi.org/10.1016/J.IPL.2021.106171.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail