Robust Classification of Dynamic Bichromatic Point Sets in R²

Authors Erwin Glazenburg , Marc van Kreveld , Frank Staals



PDF
Thumbnail PDF

File

LIPIcs.ISAAC.2024.34.pdf
  • Filesize: 0.94 MB
  • 14 pages

Document Identifiers

Author Details

Erwin Glazenburg
  • Department of Information and Computing Sciences, Utrecht University, The Netherlands
Marc van Kreveld
  • Department of Information and Computing Sciences, Utrecht University, The Netherlands
Frank Staals
  • Department of Information and Computing Sciences, Utrecht University, The Netherlands

Cite As Get BibTex

Erwin Glazenburg, Marc van Kreveld, and Frank Staals. Robust Classification of Dynamic Bichromatic Point Sets in R². In 35th International Symposium on Algorithms and Computation (ISAAC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 322, pp. 34:1-34:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024) https://doi.org/10.4230/LIPIcs.ISAAC.2024.34

Abstract

Let R ∪ B be a set of n points in R², and let k ∈ 1..n. Our goal is to compute a line that "best" separates the "red" points R from the "blue" points B with at most k outliers. We present an efficient semi-online dynamic data structure that can maintain whether such a separator exists ("semi-online" meaning that when a point is inserted, we know when it will be deleted). Furthermore, we present efficient exact and approximation algorithms that compute a linear separator that is guaranteed to misclassify at most k, points and minimizes the distance to the farthest outlier. Our exact algorithm runs in O(nk + n log n) time, and our (1+ε)-approximation algorithm runs in O(ε^(-1/2)((n + k²) log n)) time. Based on our (1+ε)-approximation algorithm we then also obtain a semi-online data structure to maintain such a separator efficiently.

Subject Classification

ACM Subject Classification
  • Theory of computation → Computational geometry
Keywords
  • classification
  • duality
  • data structures
  • dynamic
  • linear programming

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Edoardo Amaldi and Viggo Kann. The complexity and approximability of finding maximum feasible subsystems of linear relations. Theor. Comput. Sci., 147(1&2):181-210, 1995. URL: https://doi.org/10.1016/0304-3975(94)00254-G.
  2. Boris Aronov, Delia Garijo, Yurai Núñez Rodríguez, David Rappaport, Carlos Seara, and Jorge Urrutia. Minimizing the error of linear separators on linearly inseparable data. Discret. Appl. Math., 160(10-11):1441-1452, 2012. URL: https://doi.org/10.1016/j.dam.2012.03.009.
  3. Timothy M. Chan. Low-dimensional linear programming with violations. SIAM J. Comput., 34(4):879-893, 2005. URL: https://doi.org/10.1137/S0097539703439404.
  4. Timothy M. Chan. On the bichromatic k-set problem. ACM Trans. Algorithms, 6(4):62:1-62:20, 2010. URL: https://doi.org/10.1145/1824777.1824782.
  5. Timothy M Chan. Optimal partition trees. In Proceedings of the twenty-sixth annual symposium on Computational geometry, pages 1-10, 2010. URL: https://doi.org/10.1145/1810959.1810961.
  6. Timothy M. Chan and Konstantinos Tsakalidis. Optimal deterministic algorithms for 2-d and 3-d shallow cuttings. Discret. Comput. Geom., 56(4):866-881, 2016. URL: https://doi.org/10.1007/S00454-016-9784-4.
  7. Kenneth L Clarkson, Herbert Edelsbrunner, Leonidas J Guibas, Micha Sharir, and Emo Welzl. Combinatorial complexity bounds for arrangements of curves and spheres. Discrete & Computational Geometry, 5(2):99-160, 1990. URL: https://doi.org/10.1007/BF02187783.
  8. Corinna Cortes and Vladimir Vapnik. Support-vector networks. Mach. Learn., 20(3):273-297, 1995. URL: https://doi.org/10.1007/BF00994018.
  9. Mark de Berg, Otfried Cheong, Marc J. van Kreveld, and Mark H. Overmars. Computational geometry: algorithms and applications, 3rd Edition. Springer, 2008. URL: https://www.worldcat.org/oclc/227584184.
  10. David Dobkin and Subhash Suri. Dynamically computing the maxima of decomposable functions, with applications. In 30th Annual Symposium on Foundations of Computer Science, pages 488-493. IEEE Computer Society, 1989. URL: https://doi.org/10.1109/SFCS.1989.63523.
  11. Richard M Dudley. Metric entropy of some classes of sets with differentiable boundaries. Journal of Approximation Theory, 10(3):227-236, 1974. Google Scholar
  12. Hazel Everett, Jean-Marc Robert, and Marc J. van Kreveld. An optimal algorithm for the (≤ k)-levels, with applications to separation and transversal problems. Int. J. Comput. Geom. Appl., 6(3):247-261, 1996. Google Scholar
  13. Erwin Glazenburg, Frank Staals, and Marc van Kreveld. Robust classification of dynamic bichromatic point sets in r2, 2024. https://arxiv.org/abs/2406.19161, URL: https://doi.org/10.48550/arXiv.2406.19161.
  14. D. Goldfarb and S. Liu. An O(n³L) primal interior point algorithm for convex quadratic programming. Mathematical Programming, 49(1):325-340, 1990. Google Scholar
  15. Sariel Har-Peled and Mitchell Jones. Proof of dudley’s convex approximation. arXiv preprint, 2019. URL: https://arxiv.org/abs/1912.01977.
  16. Sariel Har-Peled and Vladlen Koltun. Separability with outliers. In Algorithms and Computation, 16th International Symposium, ISAAC 2005, Sanya, Hainan, China, December 19-21, 2005, Proceedings, volume 3827 of Lecture Notes in Computer Science, pages 28-39. Springer, 2005. URL: https://doi.org/10.1007/11602613_5.
  17. Cho-Jui Hsieh, Si Si, and Inderjit Dhillon. A divide-and-conquer solver for kernel support vector machines. In International conference on machine learning, pages 566-574. PMLR, 2014. URL: http://proceedings.mlr.press/v32/hsieha14.html.
  18. M. K. Kozlov, S. P. Tarasov, and L. G. Khachiyan. The polynomial solvability of convex quadratic programming. USSR Comp. Math. and Math. Phys., 20(5):223-228, 1980. Google Scholar
  19. Michael Matheny and Jeff M. Phillips. Approximate maximum halfspace discrepancy. In Hee-Kap Ahn and Kunihiko Sadakane, editors, 32nd International Symposium on Algorithms and Computation, ISAAC 2021, December 6-8, 2021, Fukuoka, Japan, volume 212 of LIPIcs, pages 4:1-4:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPICS.ISAAC.2021.4.
  20. Jirí Matousek. On geometric optimization with few violated constraints. Discret. Comput. Geom., 14(4):365-384, 1995. URL: https://doi.org/10.1007/BF02570713.
  21. Nimrod Megiddo. Applying parallel computation algorithms in the design of serial algorithms. Journal of the ACM (JACM), 30(4):852-865, 1983. URL: https://doi.org/10.1145/2157.322410.
  22. Nimrod Megiddo. Linear programming in linear time when the dimension is fixed. J. ACM, 31(1):114-127, 1984. URL: https://doi.org/10.1145/2422.322418.
  23. R. D. C. Monteiro and I. Adler. Interior path following primal-dual algorithms. Part II: Convex quadratic programming. Mathematical Programming, 44(1):43-66, 1989. URL: https://doi.org/10.1007/BF01587076.
  24. Neil Sarnak and Robert E Tarjan. Planar point location using persistent search trees. Communications of the ACM, 29(7):669-679, 1986. URL: https://doi.org/10.1145/6138.6151.
  25. Jeffrey C Schlimmer and Richard H Granger Jr. Beyond incremental processing: Tracking concept drift. In Proceedings of the Fifth AAAI National Conference on Artificial Intelligence, pages 502-507, 1986. Google Scholar
  26. Michiel Smid. A worst-case algorithm for semi-online updates on decomposable problems. Technical report, Univeristät des Saarlandes, 1990. URL: https://doi.org/10.22028/D291-26450.
  27. Haitao Wang. Constructing many faces in arrangements of lines and segments. In Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 3168-3180. SIAM, 2022. URL: https://doi.org/10.1137/1.9781611977073.123.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail