LIPIcs.ISAAC.2024.40.pdf
- Filesize: 1.2 MB
- 15 pages
Crossing Number is a celebrated problem in graph drawing. It is known to be NP-complete since the 1980s, and fairly involved techniques were already required to show its fixed-parameter tractability when parameterized by the vertex cover number. In this paper we prove that computing exactly the crossing number is NP-hard even for graphs of path-width 12 (and as a result, for simple graphs of path-width 13 and tree-width 9). Thus, while tree-width and path-width have been very successful tools in many graph algorithm scenarios, our result shows that general crossing number computations unlikely (under P≠ NP) could be successfully tackled using graph decompositions of bounded width, what has been a "tantalizing open problem" [S. Cabello, Hardness of Approximation for Crossing Number, 2013] till now.
Feedback for Dagstuhl Publishing