A Polynomial Kernel for Deletion to the Scattered Class of Cliques and Trees

Authors Ashwin Jacob , Diptapriyo Majumdar , Meirav Zehavi



PDF
Thumbnail PDF

File

LIPIcs.ISAAC.2024.41.pdf
  • Filesize: 0.84 MB
  • 17 pages

Document Identifiers

Author Details

Ashwin Jacob
  • National Institute of Technology Calicut, Kozhikode, India
Diptapriyo Majumdar
  • Indraprastha Institute of Information Technology Delhi, New Delhi, India
Meirav Zehavi
  • Ben-Gurion University of The Negev, Beersheba, Israel

Cite As Get BibTex

Ashwin Jacob, Diptapriyo Majumdar, and Meirav Zehavi. A Polynomial Kernel for Deletion to the Scattered Class of Cliques and Trees. In 35th International Symposium on Algorithms and Computation (ISAAC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 322, pp. 41:1-41:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024) https://doi.org/10.4230/LIPIcs.ISAAC.2024.41

Abstract

The class of graph deletion problems has been extensively studied in theoretical computer science, particularly in the field of parameterized complexity. Recently, a new notion of graph deletion problems was introduced, called deletion to scattered graph classes, where after deletion, each connected component of the graph should belong to at least one of the given graph classes. While fixed-parameter algorithms were given for a wide variety of problems, little progress has been made on the kernelization complexity of any of them. Here, we present the first non-trivial polynomial kernel for one such deletion problem, where, after deletion, each connected component should be a clique or a tree - that is, as dense as possible or as sparse as possible (while being connected). We develop a kernel of O(k⁵) vertices for the same.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Graph theory
  • Theory of computation → Parameterized complexity and exact algorithms
Keywords
  • Parameterized Complexity
  • Kernelization
  • Scattered Graph Classes
  • New Expansion Lemma
  • Cliques or Trees Vertex Deletion

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Jasine Babu, R. Krithika, and Deepak Rajendraprasad. Packing arc-disjoint 4-cycles in oriented graphs. In Anuj Dawar and Venkatesan Guruswami, editors, 42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2022, December 18-20, 2022, IIT Madras, Chennai, India, volume 250 of LIPIcs, pages 5:1-5:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPICS.FSTTCS.2022.5.
  2. Marthe Bonamy, Konrad K. Dabrowski, Carl Feghali, Matthew Johnson, and Daniël Paulusma. Independent feedback vertex set for p_5-free graphs. Algorithmica, 81(4):1342-1369, 2019. URL: https://doi.org/10.1007/S00453-018-0474-X.
  3. Anudhyan Boral, Marek Cygan, Tomasz Kociumaka, and Marcin Pilipczuk. A fast branching algorithm for cluster vertex deletion. Theory Comput. Syst., 58(2):357-376, 2016. URL: https://doi.org/10.1007/S00224-015-9631-7.
  4. Hajo Broersma, Jirí Fiala, Petr A. Golovach, Tomás Kaiser, Daniël Paulusma, and Andrzej Proskurowski. Linear-time algorithms for scattering number and hamilton-connectivity of interval graphs. J. Graph Theory, 79(4):282-299, 2015. URL: https://doi.org/10.1002/JGT.21832.
  5. Leizhen Cai. Fixed-parameter tractability of graph modification problems for hereditary properties. Inf. Process. Lett., 58(4):171-176, 1996. URL: https://doi.org/10.1016/0020-0190(96)00050-6.
  6. Yixin Cao and Dániel Marx. Interval deletion is fixed-parameter tractable. ACM Trans. Algorithms, 11(3):21:1-21:35, 2015. URL: https://doi.org/10.1145/2629595.
  7. Yixin Cao and Dániel Marx. Chordal editing is fixed-parameter tractable. Algorithmica, 75(1):118-137, 2016. URL: https://doi.org/10.1007/S00453-015-0014-X.
  8. Jianer Chen. Vertex cover kernelization. In Encyclopedia of Algorithms, pages 2327-2330. Springer, 2016. URL: https://doi.org/10.1007/978-1-4939-2864-4_460.
  9. Jianer Chen, Iyad A. Kanj, and Ge Xia. Improved upper bounds for vertex cover. Theor. Comput. Sci., 411(40-42):3736-3756, 2010. URL: https://doi.org/10.1016/J.TCS.2010.06.026.
  10. Maria Chudnovsky, Neil Robertson, Paul Seymour, and Robin Thomas. The strong perfect graph theorem. Annals of mathematics, pages 51-229, 2006. Google Scholar
  11. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms, 3rd Edition. MIT Press, 2009. Google Scholar
  12. Bruno Courcelle. The monadic second-order logic of graphs. i. recognizable sets of finite graphs. Inf. Comput., 85(1):12-75, 1990. URL: https://doi.org/10.1016/0890-5401(90)90043-H.
  13. Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015. URL: https://doi.org/10.1007/978-3-319-21275-3.
  14. Jan Derbisz, Lawqueen Kanesh, Jayakrishnan Madathil, Abhishek Sahu, Saket Saurabh, and Shaily Verma. A polynomial kernel for bipartite permutation vertex deletion. Algorithmica, 84(11):3246-3275, 2022. URL: https://doi.org/10.1007/S00453-022-01040-9.
  15. Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics. Springer, 2012. Google Scholar
  16. Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer, 2013. URL: https://doi.org/10.1007/978-1-4471-5559-1.
  17. Maël Dumas and Anthony Perez. An improved kernelization algorithm for trivially perfect editing. In Neeldhara Misra and Magnus Wahlström, editors, 18th International Symposium on Parameterized and Exact Computation, IPEC 2023, September 6-8, 2023, Amsterdam, The Netherlands, volume 285 of LIPIcs, pages 15:1-15:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPICS.IPEC.2023.15.
  18. Bruno Escoffier, Laurent Gourvès, and Jérôme Monnot. Complexity and approximation results for the connected vertex cover problem in graphs and hypergraphs. J. Discrete Algorithms, 8(1):36-49, 2010. URL: https://doi.org/10.1016/J.JDA.2009.01.005.
  19. Fedor V. Fomin, Tien-Nam Le, Daniel Lokshtanov, Saket Saurabh, Stéphan Thomassé, and Meirav Zehavi. Subquadratic kernels for implicit 3-hitting set and 3-set packing problems. ACM Trans. Algorithms, 15(1):13:1-13:44, 2019. URL: https://doi.org/10.1145/3293466.
  20. Fedor V Fomin, Saket Saurabh, and Yngve Villanger. A polynomial kernel for proper interval vertex deletion. SIAM Journal on Discrete Mathematics, 27(4):1964-1976, 2013. URL: https://doi.org/10.1137/12089051X.
  21. Robert Ganian, M. S. Ramanujan, and Stefan Szeider. Discovering archipelagos of tractability for constraint satisfaction and counting. ACM Trans. Algorithms, 13(2):29:1-29:32, 2017. URL: https://doi.org/10.1145/3014587.
  22. Petr A. Golovach, Daniël Paulusma, and Erik Jan van Leeuwen. Induced disjoint paths in claw-free graphs. SIAM J. Discret. Math., 29(1):348-375, 2015. URL: https://doi.org/10.1137/140963200.
  23. Martin Charles Golumbic. Algorithmic graph theory and perfect graphs, volume 57. Elsevier, 2004. Google Scholar
  24. Pinar Heggernes, Dieter Kratsch, and Daniel Meister. Bandwidth of bipartite permutation graphs in polynomial time. J. Discrete Algorithms, 7(4):533-544, 2009. URL: https://doi.org/10.1016/J.JDA.2008.11.001.
  25. Ashwin Jacob, Jari J. H. de Kroon, Diptapriyo Majumdar, and Venkatesh Raman. Deletion to scattered graph classes I - case of finite number of graph classes. J. Comput. Syst. Sci., 138:103460, 2023. URL: https://doi.org/10.1016/J.JCSS.2023.05.005.
  26. Ashwin Jacob, Diptapriyo Majumdar, and Venkatesh Raman. Deletion to scattered graph classes II - improved FPT algorithms for deletion to pairs of graph classes. J. Comput. Syst. Sci., 136:280-301, 2023. URL: https://doi.org/10.1016/J.JCSS.2023.03.004.
  27. Ashwin Jacob, Diptapriyo Majumdar, and Venkatesh Raman. Expansion lemma - variations and applications to polynomial-time preprocessing. Algorithms, 16(3):144, 2023. URL: https://doi.org/10.3390/A16030144.
  28. Hugo Jacob, Thomas Bellitto, Oscar Defrain, and Marcin Pilipczuk. Close relatives (of feedback vertex set), revisited. In Petr A. Golovach and Meirav Zehavi, editors, 16th International Symposium on Parameterized and Exact Computation, IPEC 2021, September 8-10, 2021, Lisbon, Portugal, volume 214 of LIPIcs, pages 21:1-21:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPICS.IPEC.2021.21.
  29. Bart M. P. Jansen, Jari J. H. de Kroon, and Michal Wlodarczyk. Single-exponential FPT algorithms for enumerating secluded f-free subgraphs and deleting to scattered graph classes. In Satoru Iwata and Naonori Kakimura, editors, 34th International Symposium on Algorithms and Computation, ISAAC 2023, December 3-6, 2023, Kyoto, Japan, volume 283 of LIPIcs, pages 42:1-42:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPICS.ISAAC.2023.42.
  30. Matthew Johnson, Giacomo Paesani, and Daniël Paulusma. Connected vertex cover for (sP_1+P_5)-free graphs. Algorithmica, 82(1):20-40, 2020. URL: https://doi.org/10.1007/S00453-019-00601-9.
  31. Tereza Klimosová, Josef Malík, Tomás Masarík, Jana Novotná, Daniël Paulusma, and Veronika Slívová. Colouring (P_r + P_s)-free graphs. Algorithmica, 82(7):1833-1858, 2020. URL: https://doi.org/10.1007/S00453-020-00675-W.
  32. Tomasz Kociumaka and Marcin Pilipczuk. Faster deterministic feedback vertex set. Inf. Process. Lett., 114(10):556-560, 2014. URL: https://doi.org/10.1016/J.IPL.2014.05.001.
  33. Dieter Kratsch, Haiko Müller, and Ioan Todinca. Feedback vertex set on at-free graphs. Discret. Appl. Math., 156(10):1936-1947, 2008. URL: https://doi.org/10.1016/J.DAM.2007.10.006.
  34. Cornelis Lekkeikerker and Johan Boland. Representation of a finite graph by a set of intervals on the real line. Fundamenta Mathematicae, 51(1):45-64, 1962. Google Scholar
  35. John M. Lewis and Mihalis Yannakakis. The node-deletion problem for hereditary properties is np-complete. J. Comput. Syst. Sci., 20(2):219-230, 1980. URL: https://doi.org/10.1016/0022-0000(80)90060-4.
  36. Barnaby Martin, Daniël Paulusma, and Erik Jan van Leeuwen. Disconnected cuts in claw-free graphs. J. Comput. Syst. Sci., 113:60-75, 2020. URL: https://doi.org/10.1016/J.JCSS.2020.04.005.
  37. George J Minty. On maximal independent sets of vertices in claw-free graphs. Journal of Combinatorial Theory, Series B, 28(3):284-304, 1980. URL: https://doi.org/10.1016/0095-8956(80)90074-X.
  38. Venkatesh Raman, Saket Saurabh, and C. R. Subramanian. Faster fixed parameter tractable algorithms for finding feedback vertex sets. ACM Trans. Algorithms, 2(3):403-415, 2006. URL: https://doi.org/10.1145/1159892.1159898.
  39. Stéphan Thomassé. A 4k^2 kernel for feedback vertex set. ACM Trans. Algorithms, 6(2):32:1-32:8, 2010. URL: https://doi.org/10.1145/1721837.1721848.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail