A Simple Distributed Algorithm for Sparse Fractional Covering and Packing Problems

Authors Qian Li , Minghui Ouyang , Yuyi Wang



PDF
Thumbnail PDF

File

LIPIcs.ISAAC.2024.45.pdf
  • Filesize: 0.68 MB
  • 8 pages

Document Identifiers

Author Details

Qian Li
  • Shenzhen International Center For Industrial And Applied Mathematics, Shenzhen Research Institute of Big Data, China
Minghui Ouyang
  • School of Mathematical Sciences, Peking University, Beijing, China
Yuyi Wang
  • Lambda Lab, China Railway Rolling Stock Corporation Zhuzhou Institute, China

Cite As Get BibTex

Qian Li, Minghui Ouyang, and Yuyi Wang. A Simple Distributed Algorithm for Sparse Fractional Covering and Packing Problems. In 35th International Symposium on Algorithms and Computation (ISAAC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 322, pp. 45:1-45:8, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024) https://doi.org/10.4230/LIPIcs.ISAAC.2024.45

Abstract

This paper presents a distributed algorithm in the CONGEST model that achieves a (1+ε)-approximation for row-sparse fractional covering problems (RS-FCP) and the dual column-sparse fraction packing problems (CS-FPP). Compared with the best-known (1+ε)-approximation CONGEST algorithm for RS-FCP/CS-FPP developed by Kuhn, Moscibroda, and Wattenhofer (SODA'06), our algorithm is not only much simpler but also significantly improves the dependency on ε.

Subject Classification

ACM Subject Classification
  • Theory of computation → Distributed algorithms
Keywords
  • CONGEST model
  • row-sparse fractional covering
  • column-sparse fractional packing
  • positive linear programming
  • simple algorithms

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Mohamad Ahmadi, Fabian Kuhn, and Rotem Oshman. Distributed approximate maximum matching in the CONGEST model. In Ulrich Schmid and Josef Widder, editors, 32nd International Symposium on Distributed Computing, DISC 2018, New Orleans, LA, USA, October 15-19, 2018, volume 121 of LIPIcs, pages 6:1-6:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. URL: https://doi.org/10.4230/LIPICS.DISC.2018.6.
  2. Baruch Awerbuch and Rohit Khandekar. Stateless distributed gradient descent for positive linear programs. SIAM J. Comput., 38(6):2468-2486, 2009. URL: https://doi.org/10.1137/080717651.
  3. Yair Bartal, John W. Byers, and Danny Raz. Global optimization using local information with applications to flow control. In 38th Annual Symposium on Foundations of Computer Science, FOCS '97, Miami Beach, Florida, USA, October 19-22, 1997, pages 303-312. IEEE Computer Society, 1997. URL: https://doi.org/10.1109/SFCS.1997.646119.
  4. Friedrich Eisenbrand, Stefan Funke, Naveen Garg, and Jochen Könemann. A combinatorial algorithm for computing a maximum independent set in a t-perfect graph. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, January 12-14, 2003, Baltimore, Maryland, USA, pages 517-522. ACM/SIAM, 2003. URL: http://dl.acm.org/citation.cfm?id=644108.644194.
  5. Fabian Kuhn. The price of locality: exploring the complexity of distributed coordination primitives. PhD thesis, ETH Zurich, 2005. URL: https://d-nb.info/977273725.
  6. Fabian Kuhn. Local approximation of covering and packing problems. In Encyclopedia of Algorithms, pages 1129-1132. Springer New York, 2016. URL: https://doi.org/10.1007/978-1-4939-2864-4_209.
  7. Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. What cannot be computed locally! In Soma Chaudhuri and Shay Kutten, editors, Proceedings of the Twenty-Third Annual ACM Symposium on Principles of Distributed Computing, PODC 2004, St. John’s, Newfoundland, Canada, July 25-28, 2004, pages 300-309. ACM, 2004. URL: https://doi.org/10.1145/1011767.1011811.
  8. Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. The price of being near-sighted. In Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2006, Miami, Florida, USA, January 22-26, 2006, pages 980-989. ACM Press, 2006. URL: http://dl.acm.org/citation.cfm?id=1109557.1109666.
  9. Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. Local computation: Lower and upper bounds. J. ACM, 63(2):17:1-17:44, 2016. URL: https://doi.org/10.1145/2742012.
  10. Fabian Kuhn and Roger Wattenhofer. Constant-time distributed dominating set approximation. Distributed Comput., 17(4):303-310, 2005. URL: https://doi.org/10.1007/S00446-004-0112-5.
  11. Christoph Lenzen and Roger Wattenhofer. Minimum dominating set approximation in graphs of bounded arboricity. In Nancy A. Lynch and Alexander A. Shvartsman, editors, Distributed Computing, 24th International Symposium, DISC 2010, Cambridge, MA, USA, September 13-15, 2010. Proceedings, volume 6343 of Lecture Notes in Computer Science, pages 510-524. Springer, 2010. URL: https://doi.org/10.1007/978-3-642-15763-9_48.
  12. Christos H. Papadimitriou and Mihalis Yannakakis. Linear programming without the matrix. In S. Rao Kosaraju, David S. Johnson, and Alok Aggarwal, editors, Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing, May 16-18, 1993, San Diego, CA, USA, pages 121-129. ACM, 1993. URL: https://doi.org/10.1145/167088.167127.
  13. Jukka Suomela. Survey of local algorithms. ACM Comput. Surv., 45(2):24:1-24:40, 2013. URL: https://doi.org/10.1145/2431211.2431223.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail