Online Multi-Level Aggregation with Delays and Stochastic Arrivals

Authors Mathieu Mari , Michał Pawłowski , Runtian Ren , Piotr Sankowski



PDF
Thumbnail PDF

File

LIPIcs.ISAAC.2024.49.pdf
  • Filesize: 1.4 MB
  • 20 pages

Document Identifiers

Author Details

Mathieu Mari
  • LIRMM, University of Montpellier, France
Michał Pawłowski
  • University of Warsaw, Poland
  • IDEAS NCBR, Warsaw, Poland
  • Sapienza University of Rome, Italy
Runtian Ren
  • IDEAS NCBR, Warsaw, Poland
  • University of Wrocław, Poland
Piotr Sankowski
  • University of Warsaw, Poland
  • IDEAS NCBR, Poland
  • MIM Solutions, Warsaw, Poland

Cite As Get BibTex

Mathieu Mari, Michał Pawłowski, Runtian Ren, and Piotr Sankowski. Online Multi-Level Aggregation with Delays and Stochastic Arrivals. In 35th International Symposium on Algorithms and Computation (ISAAC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 322, pp. 49:1-49:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024) https://doi.org/10.4230/LIPIcs.ISAAC.2024.49

Abstract

This paper presents a new research direction for online Multi-Level Aggregation (MLA) with delays. Given an edge-weighted rooted tree T as input, a sequence of requests arriving at its vertices needs to be served in an online manner. A request r is characterized by two parameters: its arrival time t(r) > 0 and location l(r) being a vertex in tree T. Once r arrives, we can either serve it immediately or postpone this action until any time t > t(r). A request that has not been served at its arrival time is called pending up to the moment it gets served. We can serve several pending requests at the same time, paying a service cost equal to the weight of the subtree containing the locations of all the requests served and the root of T. Postponing the service of a request r to time t > t(r) generates an additional delay cost of t - t(r). The goal is to serve all requests in an online manner such that the total cost (i.e., the total sum of service and delay costs) is minimized. The MLA problem is a generalization of several well-studied problems, including the TCP Acknowledgment (trees of depth 1), Joint Replenishment (depth 2), and Multi-Level Message Aggregation (arbitrary depth). The current best algorithm achieves a competitive ratio of O(d²), where d denotes the depth of the tree. 
Here, we consider a stochastic version of MLA where the requests follow a Poisson arrival process. We present a deterministic online algorithm that achieves a constant ratio of expectations, meaning that the ratio between the expected costs of the solution generated by our algorithm and the optimal offline solution is bounded by a constant. Our algorithm is obtained by carefully combining two strategies. In the first one, we plan periodic oblivious visits to the subset of frequent vertices, whereas, in the second one, we greedily serve the pending requests in the remaining vertices. This problem is complex enough to demonstrate a very rare phenomenon that "single-minded" or "sample-average" strategies are not enough in stochastic optimization.

Subject Classification

ACM Subject Classification
  • Theory of computation → Online algorithms
Keywords
  • online algorithms
  • online network design
  • stochastic model
  • Poisson arrivals

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Alok Aggarwal and James K. Park. Improved algorithms for economic lot size problems. Operations research, 41(3):549-571, 1993. URL: https://doi.org/10.1287/OPRE.41.3.549.
  2. Lauri Ahlroth, André Schumacher, and Pekka Orponen. Online bin packing with delay and holding costs. Operations Research Letters, 41(1):1-6, 2013. URL: https://doi.org/10.1016/J.ORL.2012.10.006.
  3. Esther Arkin, Dev Joneja, and Robin Roundy. Computational complexity of uncapacitated multi-echelon production planning problems. Operations research letters, 8(2):61-66, 1989. Google Scholar
  4. Itai Ashlagi, Yossi Azar, Moses Charikar, Ashish Chiplunkar, Ofir Geri, Haim Kaplan, Rahul Makhijani, Yuyi Wang, and Roger Wattenhofer. Min-cost bipartite perfect matching with delays. In Proc. APPROX / RANDOM, pages 1:1-1:20, 2017. URL: https://doi.org/10.4230/LIPICS.APPROX-RANDOM.2017.1.
  5. Y. Askoy and S. S. Erenguk. Multi-item inventory models with coordinated replenishment: a survey. International Journal of Operations and Production Management, 8:63-73, 1988. Google Scholar
  6. Yossi Azar, Ashish Chiplunkar, and Haim Kaplan. Polylogarithmic bounds on the competitiveness of min-cost perfect matching with delays. In Proc. SODA, pages 1051-1061, 2017. URL: https://doi.org/10.1137/1.9781611974782.67.
  7. Yossi Azar, Ashish Chiplunkar, Shay Kutten, and Noam Touitou. Set cover with delay-clairvoyance is not required. In Proc. ESA, pages 8:1-8:21, 2020. URL: https://doi.org/10.4230/LIPICS.ESA.2020.8.
  8. Yossi Azar, Yuval Emek, Rob van Stee, and Danny Vainstein. The price of clustering in bin-packing with applications to bin-packing with delays. In Proc. SPAA, pages 1-10, 2019. URL: https://doi.org/10.1145/3323165.3323180.
  9. Yossi Azar, Arun Ganesh, Rong Ge, and Debmalya Panigrahi. Online service with delay. In Proc, STOC, pages 551-563, 2017. URL: https://doi.org/10.1145/3055399.3055475.
  10. Yossi Azar and Amit Jacob-Fanani. Deterministic min-cost matching with delays. Theory of Computing Systems, 64(4):572-592, 2020. URL: https://doi.org/10.1007/S00224-019-09963-7.
  11. Yossi Azar, Shahar Lewkowicz, and Danny Vainstein. List update with delays or time windows. In Proc. ICALP, pages 15:1-15:20, 2024. URL: https://doi.org/10.4230/LIPICS.ICALP.2024.15.
  12. Yossi Azar, Runtian Ren, and Danny Vainstein. The min-cost matching with concave delays problem. In Proc. SODA, pages 301-320, 2021. URL: https://doi.org/10.1137/1.9781611976465.20.
  13. Yossi Azar and Noam Touitou. General framework for metric optimization problems with delay or with deadlines. In Proc. FOCS, pages 60-71, 2019. URL: https://doi.org/10.1109/FOCS.2019.00013.
  14. Yossi Azar and Noam Touitou. Beyond tree embeddings-a deterministic framework for network design with deadlines or delay. In Proc. FOCS, pages 1368-1379, 2020. URL: https://doi.org/10.1109/FOCS46700.2020.00129.
  15. Luca Becchetti, Alberto Marchetti-Spaccamela, Andrea Vitaletti, Peter Korteweg, Martin Skutella, and Leen Stougie. Latency-constrained aggregation in sensor networks. ACM Transactions on Algorithms, 6(1):1-20, 2009. URL: https://doi.org/10.1145/1644015.1644028.
  16. Marcin Bienkowski, Martin Böhm, Jaroslaw Byrka, Marek Chrobak, Christoph Dürr, Lukáš Folwarcznỳ, Łukasz Jeż, Jiří Sgall, Nguyen Kim Thang, and Pavel Veselỳ. Online algorithms for multi-level aggregation. In Proc. ESA, pages 12:1-12:17, 2016. Google Scholar
  17. Marcin Bienkowski, Martin Böhm, Jaroslaw Byrka, Marek Chrobak, Christoph Dürr, Lukáš Folwarcznỳ, Łukasz Jeż, Jiří Sgall, Nguyen Kim Thang, and Pavel Veselỳ. Online algorithms for multilevel aggregation. Operations Research, 68(1):214-232, 2020. URL: https://doi.org/10.1287/OPRE.2019.1847.
  18. Marcin Bienkowski, Martin Böhm, Jaroslaw Byrka, Marek Chrobak, Christoph Dürr, Lukáš Folwarcznỳ, Łukasz Jeż, Jiří Sgall, Nguyen Kim Thang, and Pavel Veselỳ. New results on multi-level aggregation. Theoretical Computer Science, 861:133-143, 2021. URL: https://doi.org/10.1016/J.TCS.2021.02.016.
  19. Marcin Bienkowski, Martin Böhm, Jarosław Byrka, and Jan Marcinkowski. Online facility location with linear delay. In Proc. APPROX/RANDOM, pages 45:1-45:17, 2022. URL: https://doi.org/10.4230/LIPICS.APPROX/RANDOM.2022.45.
  20. Marcin Bienkowski, Jarosław Byrka, Marek Chrobak, Neil Dobbs, Tomasz Nowicki, Maxim Sviridenko, Grzegorz Świrszcz, and Neal E. Young. Approximation algorithms for the joint replenishment problem with deadlines. Journal of Scheduling, 18(6):545-560, 2015. URL: https://doi.org/10.1007/S10951-014-0392-Y.
  21. Marcin Bienkowski, Jaroslaw Byrka, Marek Chrobak, Łukasz Jeż, Dorian Nogneng, and Jiří Sgall. Better approximation bounds for the joint replenishment problem. In Proc. SODA, pages 42-54, 2014. Google Scholar
  22. Marcin Bienkowski, Jaroslaw Byrka, Marek Chrobak, Łukasz Jeż, Jiří Sgall, and Grzegorz Stachowiak. Online control message aggregation in chain networks. In Proc. WADS, pages 133-145, 2013. Google Scholar
  23. Marcin Bienkowski, Artur Kraska, Hsiang-Hsuan Liu, and Paweł Schmidt. A primal-dual online deterministic algorithm for matching with delays. In Proc. WAOA, pages 51-68, 2018. Google Scholar
  24. Marcin Bienkowski, Artur Kraska, and Paweł Schmidt. A match in time saves nine: Deterministic online matching with delays. In Proc. WAOA, pages 132-146, 2017. Google Scholar
  25. Nadjib Brahimi, Stéphane Dauzere-Peres, Najib M Najid, and Atle Nordli. Single item lot sizing problems. European Journal of Operational Research, 168(1):1-16, 2006. URL: https://doi.org/10.1016/J.EJOR.2004.01.054.
  26. Carlos Fisch Brito, Elias Koutsoupias, and Shailesh Vaya. Competitive analysis of organization networks or multicast acknowledgment: How much to wait? Algorithmica, 64:584-605, 2012. URL: https://doi.org/10.1007/S00453-011-9567-5.
  27. Niv Buchbinder, Moran Feldman, Joseph Naor, and Ohad Talmon. O (depth)-competitive algorithm for online multi-level aggregation. In Proc. SODA, pages 1235-1244, 2017. Google Scholar
  28. Niv Buchbinder, Tracy Kimbrelt, Retsef Levi, Konstantin Makarychev, and Maxim Sviridenko. Online make-to-order joint replenishment model: primal dual competitive algorithms. In Proc. SODA, pages 952-961, 2008. URL: http://dl.acm.org/citation.cfm?id=1347082.1347186.
  29. Maxim A. Bushuev, Alfred Guiffrida, M.Y. Jaber, and Mehmood Khan. A review of inventory lot sizing review papers. Management Research Review, 38(3):283-298, 2015. Google Scholar
  30. Ryder Chen, Jahanvi Khatkar, and Seeun William Umboh. Online weighted cardinality joint replenishment problem with delay. In Proc. ICALP, 2022. Google Scholar
  31. Lindsey Deryckere and Seeun William Umboh. Online matching with set and concave delays. In Proc. APPROX/RANDOM, pages 17:1-17:17, 2023. URL: https://doi.org/10.4230/LIPICS.APPROX/RANDOM.2023.17.
  32. Daniel R. Dooly, Sally A. Goldman, and Stephen D. Scott. On-line analysis of the tcp acknowledgment delay problem. Journal of the ACM, 48(2):243-273, 2001. URL: https://doi.org/10.1145/375827.375843.
  33. Yuval Emek, Shay Kutten, and Roger Wattenhofer. Online matching: haste makes waste! In Proc. STOC, pages 333-344, 2016. URL: https://doi.org/10.1145/2897518.2897557.
  34. Yuval Emek, Yaacov Shapiro, and Yuyi Wang. Minimum cost perfect matching with delays for two sources. Theoretical Computer Science, 754:122-129, 2019. URL: https://doi.org/10.1016/J.TCS.2018.07.004.
  35. Leah Epstein. On bin packing with clustering and bin packing with delays. Discrete Optimization, 41:100647, 2021. URL: https://doi.org/10.1016/J.DISOPT.2021.100647.
  36. Leah Epstein. Open-end bin packing: new and old analysis approaches. Discrete Applied Mathematics, 321:220-239, 2022. URL: https://doi.org/10.1016/J.DAM.2022.07.003.
  37. Suresh K. Goyal and Ahmet T. Satir. Joint replenishment inventory control: deterministic and stochastic models. European journal of operational research, 38(1):2-13, 1989. Google Scholar
  38. Anupam Gupta, Amit Kumar, and Debmalya Panigrahi. Caching with time windows. In Proc. STOC, pages 1125-1138, 2020. URL: https://doi.org/10.1145/3357713.3384277.
  39. Anupam Gupta, Amit Kumar, and Debmalya Panigrahi. A hitting set relaxation for k-server and an extension to time-windows. In Proc. FOCS, pages 504-515, 2022. Google Scholar
  40. Sungjin Im, Benjamin Moseley, Chenyang Xu, and Ruilong Zhang. Online dynamic acknowledgement with learned predictions. In Proc. INFOCOM, pages 1-10, 2023. URL: https://doi.org/10.1109/INFOCOM53939.2023.10228882.
  41. Raf Jans and Zeger Degraeve. Modeling industrial lot sizing problems: a review. International Journal of Production Research, 46(6):1619-1643, 2008. Google Scholar
  42. Dev Joneja. The joint replenishment problem: new heuristics and worst case performance bounds. Operations Research, 38(4):711-723, 1990. URL: https://doi.org/10.1287/OPRE.38.4.711.
  43. Naonori Kakimura and Tomohiro Nakayoshi. Deterministic primal-dual algorithms for online k-way matching with delays. In Proc. ICCC, pages 238-249, 2023. URL: https://doi.org/10.1007/978-3-031-49193-1_18.
  44. Behrooz Karimi, S.M.T. Fatemi Ghomi, and J.M. Wilson. The capacitated lot sizing problem: a review of models and algorithms. Omega, 31(5):365-378, 2003. Google Scholar
  45. Anna R. Karlin, Claire Kenyon, and Dana Randall. Dynamic tcp acknowledgement and other stories about e/(e-1). In Proc. STOC, pages 502-509, 2001. URL: https://doi.org/10.1145/380752.380845.
  46. Yasushi Kawase and Tomohiro Nakayoshi. Online matching with delays and size-based costs. arXiv preprint arXiv:2408.08658, 2024. URL: https://doi.org/10.48550/arXiv.2408.08658.
  47. Sanjeev Khanna, Joseph Seffi Naor, and Dan Raz. Control message aggregation in group communication protocols. In Proc. ICALP, pages 135-146, 2002. Google Scholar
  48. Moutaz Khouja and Suresh Goyal. A review of the joint replenishment problem literature: 1989-2005. European journal of operational Research, 186(1):1-16, 2008. URL: https://doi.org/10.1016/J.EJOR.2007.03.007.
  49. Tung-Wei Kuo. Online deterministic minimum cost bipartite matching with delays on a line. arXiv preprint, 2024. URL: https://doi.org/10.48550/arXiv.2408.02526.
  50. Ngoc Mai Le, Seeun William Umboh, and Ningyuan Xie. The power of clairvoyance for multi-level aggregation and set cover with delay. In Proc. SODA, pages 1594-1610, 2023. URL: https://doi.org/10.1137/1.9781611977554.CH59.
  51. Ka-Cheong Leung, Victor OK Li, and Daiqin Yang. An overview of packet reordering in transmission control protocol (tcp): problems, solutions, and challenges. IEEE Transactions on Parallel and Distributed Systems, 18(4):522-535, 2007. URL: https://doi.org/10.1109/TPDS.2007.1011.
  52. Retsef Levi, Robin Roundy, David Shmoys, and Maxim Sviridenko. A constant approximation algorithm for the one-warehouse multiretailer problem. Management Science, 54(4):763-776, 2008. URL: https://doi.org/10.1287/MNSC.1070.0781.
  53. Retsef Levi, Robin Roundy, and David B Shmoys. Primal-dual algorithms for deterministic inventory problems. In Proc. STOC, pages 353-362, 2004. URL: https://doi.org/10.1145/1007352.1007410.
  54. Retsef Levi and Maxim Sviridenko. Improved approximation algorithm for the one-warehouse multi-retailer problem. In Proc. APPROX-RANDOM, pages 188-199, 2006. URL: https://doi.org/10.1007/11830924_19.
  55. Xingwu Liu, Zhida Pan, Yuyi Wang, and Roger Wattenhofer. Impatient online matching. In Proc. ISAAC, volume 123, pages 62:1-62:12, 2018. URL: https://doi.org/10.4230/LIPICS.ISAAC.2018.62.
  56. Mathieu Mari, Michał Pawłowski, Runtian Ren, and Piotr Sankowski. Online matching with delays and stochastic arrival times. In Proc. AAMAS, pages 976-984, 2023. Google Scholar
  57. Mathieu Mari, Michał Pawłowski, Runtian Ren, and Piotr Sankowski. Online multi-level aggregation with delays and stochastic arrivals. arXiv preprint arXiv:2404.09711, 2024. Google Scholar
  58. Jeremy McMahan. A d-competitive algorithm for the multilevel aggregation problem with deadlines. arXiv preprint arXiv:2108.04422, 2021. URL: https://arxiv.org/abs/2108.04422.
  59. Darya Melnyk, Yuyi Wang, and Roger Wattenhofer. Online k-way matching with delays and the h-metric. arXiv preprint arXiv:2109.06640, 2021. URL: https://arxiv.org/abs/2109.06640.
  60. Tim Nonner and Alexander Souza. Approximating the joint replenishment problem with deadlines. Discrete Mathematics, Algorithms and Applications, 1(02):153-173, 2009. URL: https://doi.org/10.1142/S1793830909000130.
  61. Daniel Quadt and Heinrich Kuhn. Capacitated lot-sizing with extensions: a review. Operation Research, 6(1):61-83, 2008. URL: https://doi.org/10.1007/S10288-007-0057-1.
  62. Sheldon M. Ross. Stochastic processes, volume 2. Wiley New York, 1996. Google Scholar
  63. Steven S. Seiden. A guessing game and randomized online algorithms. In Proc. STOC, pages 592-601, 2000. URL: https://doi.org/10.1145/335305.335385.
  64. Sombat Sindhuchao, H. Edwin Romeijn, Elif Akçali, and Rein Boondiskulchok. An integrated inventory-routing system for multi-item joint replenishment with limited vehicle capacity. Journal of Global Optimization, 32:93-118, 2005. URL: https://doi.org/10.1007/S10898-004-5908-0.
  65. Noam Touitou. Nearly-tight lower bounds for set cover and network design with deadlines/delay. In Proc. ISAAC, pages 53:1-53:16, 2021. URL: https://doi.org/10.4230/LIPICS.ISAAC.2021.53.
  66. Noam Touitou. Frameworks for nonclairvoyant network design with deadlines or delay. In Proc. ICALP, pages 105:1-105:20, 2023. URL: https://doi.org/10.4230/LIPICS.ICALP.2023.105.
  67. Noam Touitou. Improved and deterministic online service with deadlines or delay. In Proc. STOC, pages 761-774, 2023. URL: https://doi.org/10.1145/3564246.3585107.
  68. Wei Yuan, Srikanth V. Krishnamurthy, and Satish K. Tripathi. Synchronization of multiple levels of data fusion in wireless sensor networks. In Proc. GLOBECOM, volume 1, pages 221-225, 2003. URL: https://doi.org/10.1109/GLOCOM.2003.1258234.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail